
Payment Card Industry (PCI)

Software Security Framework

Secure Software Requirements and Assessment Procedures

Version 1.2

December 2022

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 2

Document Changes

Date Version Description

January 2019 1.0 Initial release

April 2021 1.1 Update from v1.0. See PCI Software Security Framework – Summary of Changes from Secure Software

Requirements and Assessment Procedures Version 1.0 to 1.1 for details of changes.

December 2022 1.2 Update from v1.1. See PCI Software Security Framework – Summary of Changes from Secure Software

Requirements and Assessment Procedures Version 1.1 to 1.2 for details of changes.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 3

Table of Contents

Introduction ... 6

Terminology .. 6

Related Publications ... 7

Stakeholder Roles and Responsibilities ... 8

Overview of PCI Secure Standard .. 9

Scope of Security Requirements .. 9

Requirement Modules ... 10

Requirement Module Applicability .. 10

Objective-Based Approach to Requirements.. 11

Requirement Frequency and Rigor... 11

Requirement Structure .. 11

Testing Methods.. 12

Reliance on Third-Party Testing ... 13

Use of Sampling .. 13

Use of a Test Platform .. 14

Core Requirements ... 15

Minimizing the Attack Surface... 15

Control Objective 1: Critical Asset Identification ... 15

Control Objective 2: Secure Defaults.. 18

Control Objective 3: Sensitive Data Retention ... 24

Software Protection Mechanisms ... 31

Control Objective 4: Critical Asset Protection ... 31

Control Objective 5: Authentication and Access Control .. 34

Control Objective 6: Sensitive Data Protection... 38

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 4

Control Objective 7: Use of Cryptography .. 41

Secure Software Operations ... 48

Control Objective 8: Activity Tracking ... 48

Control Objective 9: Attack Detection ... 52

Secure Software Lifecycle Management .. 54

Control Objective 10: Threat and Vulnerability Management ... 54

Control Objective 11: Secure Software Updates .. 56

Control Objective 12: Software Vendor Implementation Guidance .. 58

Module A – Account Data Protection Requirements .. 60

Purpose and Scope... 60

Security Requirements .. 62

Control Objective A.1: Sensitive Authentication Data .. 62

Control Objective A.2: Cardholder Data Protection .. 63

Module B – Terminal Software Requirements .. 66

Purpose and Scope... 66

Background ... 66

Considerations .. 67

Security Requirements .. 68

Control Objective B.1: Terminal Software Documentation ... 68

Control Objective B.2: Terminal Software Design .. 70

Control Objective B.3: Terminal Software Attack Mitigation ... 78

Control Objective B.4: Terminal Software Security Testing ... 82

Control Objective B.5: Terminal Software Implementation Guidance .. 84

Module C – Web Software Requirements .. 86

Purpose and Scope... 86

Considerations .. 86

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 5

Security Requirements .. 87

Control Objective C.1: Web Software Components & Services ... 87

Control Objective C.2: Web Software Access Controls .. 92

Control Objective C.3: Web Software Attack Mitigation ... 99

Control Objective C.4: Web Software Communications ... 108

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 6

Introduction

To ensure reliable and accurate electronic payment transactions, the systems and software used as part of the payment transaction flow must be

designed, developed, and maintained in a manner that protects the integrity of payment transactions and the confidentiality of all sensitive data

stored, processed, or transmitted in association with payment transactions. This document, the Payment Card Industry (PCI) Secure Software

Requirements and Assessment Procedures (hereafter referred to as the “PCI Secure Software Standard” or “this standard”) provides a baseline of

security requirements with corresponding assessment procedures and guidance for building secure payment software.

The PCI Secure Software Standard is intended for use as part of the PCI Software Security Framework (SSF). Entities wishing to have their

payment software validated under the PCI SSF would do so to this standard.

Terminology

A list of applicable terms and definitions is provided in the PCI Software Security Framework Glossary of Terms, Abbreviations, and Acronyms,

available in the PCI SSC Document Library: https://www.pcisecuritystandards.org/document_library/.

Additionally, definitions for general PCI terminology is provided in the PCI Glossary on the PCI SSC website at:

https://www.pcisecuritystandards.org/pci_security/glossary/.

https://www.pcisecuritystandards.org/document_library/
https://www.pcisecuritystandards.org/pci_security/glossary/

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 7

Related Publications

In addition to the security requirements and assessment procedures for payment software defined in this standard, there are additional documents

available to support the use of this standard. For more information, refer to the latest versions of (or successor documents to) the following PCI

SSC publications in the PCI SSC Document Library:

Document Name Description

PCI Software Security Framework – PCI Secure Software Lifecycle Standard

(“Secure SLC Standard”)
Additional security requirements for software development organizations to

ensure they develop and maintain software securely throughout the entire

software lifecycle.

PCI Software Security Framework – Glossary of Terms, Abbreviations, and

Acronyms (“SSF Glossary”)
Describes important terms, abbreviations, and acronyms used throughout the

Secure Software Standard and supporting documentation.

PCI Software Security Framework – Secure Software Program Guide

(“Secure Software Program Guide”)
Describes the program requirements for entities to validate their payment

software for compliance to the Secure Software Standard and have their

software listed and maintained on the PCI SSC’s List of Validated Payment

Software.

PCI Software Security Framework – Secure Software Template for Report on

Validation (“Secure Software ROV Reporting Template”)
The mandatory template that qualified SSF Assessors must use to document

the results of a Secure Software Assessment and report those results to PCI

SSC.

PCI Software Security Framework – Secure Software Attestation of Validation

(“Secure Software AOV”)
A template document provided by PCI SSC that Secure Software Assessor

Companies and Vendors must use to attest to the results of a Secure

Software Assessment.

PCI Software Security Framework – Qualification Requirements for Assessors

(“SSF Qualification Requirements”)
Describes the minimum capability and related documentation requirements

that SSF Assessor Companies and their Assessor-Employees must satisfy to

be qualified to perform Secure Software Assessments.

PCI PIN Transaction Security (PTS) Point-of-Interaction (POI) Modular

Security Requirements (“PCI PTS POI Standard")
Security requirements that must be met for payment acceptance devices to

obtain Payment Card Industry (PCI) PIN Transaction Security (PTS) Point of

Interaction (POI) device approval.

Vendor Release Agreement (“VRA”) Establishes the terms and conditions that Vendors of Validated Payment

Software must meet to participate in PCI Programs.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 8

Stakeholder Roles and Responsibilities

There are numerous stakeholders involved in maintaining and managing PCI standards. The following describes the high-level roles and

responsibilities of these stakeholders as they relate to the PCI Software Security Framework:

PCI SSC – Responsible for maintaining the standards, supporting programs, and related documentation associated with the PCI Software Security

Framework including, but not limited to:

▪ Maintaining the PCI Secure Software Standard (this document).

▪ Maintaining all supporting documentation including reporting templates, attestation forms, frequently asked questions (FAQs), and

guidance to assist entities implementing and assessing to this standard.

▪ Providing instructions and guidance for SSF Assessors in accordance with the requirements and assessment procedures in this standard.

▪ Maintaining a list of all SSF Assessors qualified to perform assessments to this standard (on the PCI SSC Website).

▪ Maintaining a quality assurance program for SSF Assessors.

Participating Payment Brands – Responsible for developing and enforcing their respective compliance programs related to PCI standards

including, but not limited to:

▪ Defining and enforcing requirements, mandates, and deadlines for compliance to the PCI Secure Software Standard (this document).

▪ Determining the entities that are required to comply with this standard.

▪ Specifying the validation methods and frequency.

▪ Identifying and enforcing any fines or penalties for non-compliance.

SSF Assessor Companies – Responsible for maintaining the required knowledge, expertise, and equipment necessary to execute all

assessment activities, adhering to all SSF Assessor Qualification Requirements, performing assessments to this standard, and generating the

assessment report documenting the results. Note that not all SSF Assessor Companies are qualified to perform assessments to this standard. For

more information on assessment activities and assessor qualification requirements, refer to the PCI Secure Software Program Guide and

Qualification Requirements for SSF Assessors, respectively.

Payment Software Vendors / Providers / Developers – Responsible for developing, distributing, maintaining, and operating (where applicable)

payment software, and ensuring that their payment software meets all applicable security requirements defined in this standard.

https://www.pcisecuritystandards.org/

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 9

Overview of PCI Secure Software Standard

The security requirements defined within the PCI Secure Software Standard ensure that payment software is designed, engineered, developed,

and maintained in a manner that protects payment transactions and data, minimizes vulnerabilities, and defends against attacks.

Scope of Security Requirements

The security requirements defined in this standard describe the security characteristics, controls, features, and capabilities that payment software

must possess to protect the integrity of payment functions and the confidentiality of sensitive payment data. The payment software features that

are in scope for these requirements include, but are not limited to:

▪ All end-to-end payment software functionality, including:

− All payment functions,

− Inputs and outputs,

− Handling of error conditions,

− Interfaces and connections to other files, systems, and/or software,

− Data flows, and

− Security mechanisms, controls, and countermeasures, such as authentication, authorization, validation, parameterization,

segmentation, logging, and so on.

▪ Processes used by the software vendor, provider, or developer to identify and support software security controls.

▪ Guidance that the software vendor, provider, or developer is expected to provide to stakeholders that describes:

− How to implement and operate the payment software securely.

− The configuration options available that can impact the security of payment software, including those of the execution environment

and related system components.

− How to implement security updates.

− How and where to report security issues to the software vendor, provider, and/or developer.

Note that the software vendor, provider, or developer may be expected to provide such guidance even when the specific settings:

− Cannot be controlled by the payment software vendor, provider, or developer after the software is installed in a production

environment; or

− Are the responsibility of the implementing entity and not the software vendor, provider, or developer.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 10

▪ Any other software, software functionality, or services necessary for a full implementation of the payment software, including but not

limited to:

− Third-party and open-source software functions, libraries, packages, components, services, and dependencies embedded in or

relied upon by the payment software to provide its intended function.

− Features and functions of a supported platform or the execution environment relied upon by the payment software for security

purposes.

− Third-party or custom tools and functions relied upon by the payment software to satisfy security requirements in this standard.

Requirement Modules

The PCI Secure Software Standard includes the concept of requirement “modules,” which are distinct groups of requirements relating to a specific

topic or type of software. Modules are intended to clarify how and when specific requirements apply to a given payment application or function.

The requirements in this standard are organized into the following four requirement modules:

▪ Core Requirements (“Core Module”): General security requirements that apply to all types of payment software regardless of software

function, design, or underlying technology.

▪ Module A – Account Data Protection Requirements (“Account Data Protection Module”): Additional security requirements for

payment software that store, process, or transmit account data.

▪ Module B – Terminal Software Requirements (“Terminal Software Module”): Additional security requirements for payment software

specifically designed for deployment and operation on PCI-approved POI devices.

▪ Module C – Web Software Requirements (“Web Software Module”): Additional security requirements for payment software that uses

Internet technologies, protocols, and languages to initiate or support electronic payment transactions.

Requirement Module Applicability

Each requirement module includes its own applicability criteria. It is expected that software assessed to this standard will include assessment to all

applicable modules. At a minimum, payment software must be assessed to the Core Module. Additional modules are included in the assessment

when the software meets the applicability criteria for those additional modules. Refer to the “Purpose and Scope” section within each additional

module for more information on module applicability criteria.

Be aware that some requirements defined within individual modules are extensions of Core Module requirements. Where such relationships are

noted, the requirements in modules should be assessed in conjunction with their associated “Core” requirements.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 11

Also note that there may be certain requirements defined within a module that are similar to requirements in other modules or that may have

broader applicability beyond the module(s) where they are defined. Unless otherwise noted, such requirements are required to be assessed only

in the context of that module. With that said, such requirements are likely to be consolidated and/or applied more broadly in future updates to this

standard. Entities are encouraged to identify and apply requirements that may be applicable to an entity’s payment software regardless of whether

the entity is required to assess to the module where such requirements are defined.

Objective-Based Approach to Requirements

The PCI Software Security Framework has adopted an “objective-based” approach to defining the security requirements in this standard. The PCI

SSC acknowledges that there is no “one size fits all” approach to software security and that software vendors need flexibility to determine the

software security controls and features most appropriate to address their specific business needs and risks.

An “objective-based” approach is one that states security requirements as a desired security goal or outcome without necessarily specifying the

method(s) to be used to achieve the desired goal. This approach enables entities to implement software security controls based on the risks

identified by the software vendor for a given software application. For this approach to be successful, software vendors must possess a robust

risk-management practice as an integral part of their software development lifecycle (SDLC) and be able to demonstrate how the implemented

security controls are supported by the results of their risk identification and management practices. Without a robust risk-management practice in

place and evidence available to support risk-based decision making, adherence to the requirements defined in this standard may be difficult to

validate.

Requirement Frequency and Rigor

Given the nature of PCI SSC’s objective-based approach to security requirements, many security requirements do not specify the level of rigor or

frequency for periodic or recurring activities, such as the maximum period in which a security update must be provided to fix known vulnerabilities.

In such cases, the software vendor may define the level of rigor or frequency appropriate for its business needs. The level of rigor or frequency

chosen, however, must be supported by documented risk assessments and the resultant risk management decisions. Additionally, the software

vendor must demonstrate that its implementation provides ongoing assurance that the software security controls and security activities are

effective and satisfy all relevant control objectives.

Requirement Structure

The security requirements defined in this standard are as follows:

▪ Control Objectives – The high-level security objectives that must be met. Control objectives are broadly stated to provide software

vendors the flexibility to determine the best method(s) to achieve the stated objective. Regardless of the method(s) chosen, it is expected

that the software vendor be able to produce clear and unambiguous evidence to demonstrate that the chosen method(s) is/are

appropriate, sufficient, and properly implemented to satisfy the objective.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 12

▪ Test Requirements – The expected assessment activities to be performed by an assessor to determine whether a specific control

objective has been met. Test requirements are intended to provide both the software vendor and assessor with a common understanding

of the tasks expected to be carried out by the assessor during testing. The specific method(s) used, the item(s) examined, and the

personnel interviewed must be appropriate for the control objective being validated and for the software being assessed.

▪ Guidance – Additional information to help payment software vendors and assessors understand the intent of each control objective. The

guidance may also include best practices that should be considered and examples of controls or methods that may be used to satisfy the

control objective. Guidance is not intended to preclude other methods that a software vendor may use to meet a control objective, nor

does it replace or amend the control objective to which it refers.

Testing Methods

To support the validation of their software to the requirements in this standard, software vendors are expected to produce evidence that they have

satisfied the stated control objectives. The test requirements identified for each control objective describe the activities to be performed by the

assessor to confirm that the software and/or software vendor have met the control objective(s). Test requirements include the following testing

activities:

▪ Examine: The assessor critically evaluates data evidence. Common examples include software design and architecture documents

(electronic or physical), source code, configuration and metadata files, bug tracking data and other output from software development

systems, and security-testing results. The choice of evidence that may be used to meet an “examination” requirement is deliberately left

open for the tester to determine. However, it is a requirement of this standard that the software source code be made available for review

as part of the assessment. It is not acceptable for an assessment report to be provided where no source code was examined or used in

the process of performing the testing.

▪ Interview: The assessor converses with individual personnel. The purposes of interviews include determining how an activity is

performed, whether an activity is performed as defined, and whether personnel have particular knowledge or understanding of applicable

policies, processes, responsibilities, or concepts.

▪ Test: The assessor evaluates the software operation to analyze its characteristics and behavior in various scenarios. Unless otherwise

stated, software “testing” must include functional testing using forensic tools and techniques. Examples of such tools and techniques

include the use of automated static analysis security testing (SAST), dynamic analysis security testing (DAST), interactive application

security testing (IAST), and software composition analysis (SCA) tools. Where adversarial testing is explicitly referenced, fuzzing and

other penetration testing tools and techniques must be used to try and bypass software security controls or to cause the software to

behave in unintended ways.

The specific items or processes to be examined or tested, and the personnel to be interviewed should be appropriate for the control objective

being validated and for each entity’s organizational structure, culture, business practices, and software products. It is at the discretion of the

assessor to determine the suitability or adequacy of the evidence provided by the entity to support each test requirement. Where bullets are

specified in a control objective or test requirement, each bullet is expected to be validated as part of the assessment.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 13

When documenting the assessment results, the assessor identifies the testing activities performed and the result of each activity. While it is

expected that an assessor performs all test requirements defined for each control objective, it may also be possible for a control objective to be

validated using different or additional testing methods. In such cases, the assessor is expected to document why alternative testing methods were

used and how those methods provide at least the same level of assurance as the stated test requirements. Where terms such as “periodic,”

“appropriate,” and “reasonable” are used in the test requirement, it is the software providers responsibility to define and defend its decisions

regarding the frequency, robustness, and maturity of the implemented controls or processes.

Reliance on Third-Party Testing

All test requirements are expected to be performed by the assessor. An assessor may choose, however, to rely on testing performed by a third-

party to satisfy a test requirement, including the software provider. The assessor retains full responsibility for the testing activities and results

regardless of whether the testing is performed by the assessor, the software provider, or a third-party. Where third-party testing is relied upon by

the assessor, the assessor must document and justify the following:

▪ How the evidence provided by the third-party supports the same level of rigor as testing performed by the assessor, and

▪ How the assessor verified that the third-party testing relied upon by the assessor is appropriate.

Where an assessed entity’s testing is to be used for the purposes of satisfying test requirements, the assessor must first verify the software vendor

is Secure SLC-qualified1 before software vendor testing can be relied upon.

Use of Sampling

Where appropriate, the assessor may utilize sampling as part of the testing process in accordance with a documented sampling methodology. The

assessor’s sampling methodology must detail how samples are chosen and must be provided to PCI SSC upon submission of the Report on

Validation (ROV).

Sample selection must include a representative sample of all people, processes, and technologies in scope for the PCI Secure Software

assessment. Sample sizes must be sufficiently large to demonstrate that the sample accurately reflects the characteristics of the larger population.

In instances where the assessor’s findings are based on a representative sample rather than the complete set of applicable items, the assessor

must explicitly note this fact in the ROV, detail the items chosen as samples for the testing, and provide references to the applicable sections of

the assessor’s sampling methodology provided with the ROV. Where the assessor selects samples that do not align with the assessor’s

documented sampling methodology, the assessor must provide justification in the ROV for each instance where such samples are used.

1 Refer to the PCI Secure SLC Standard and its associated Program Guide for more information on Secure SLC qualification.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 14

Use of a Test Platform

To ensure that software testing complies with this standard, it may be necessary for the software vendor to provide a test platform. A test platform

is special test functionality that is either separate or absent from production-level code. The test platform must rely on as much of the intended

production-level functionality as possible. The test platform serves only to provide a test framework that allows for software functionality to be

exercised outside of a production-level deployment environment to verify the software’s compliance to this standard. For example, elevated

privileges or access capabilities may need to be granted for the purpose of providing run-time visibility into various facets of the software

operation. Other examples include providing a test function to initiate a test transaction or to perform authentication functions. It is at the

assessor’s discretion to request any test functionality deemed necessary to verify the software’s compliance with applicable requirements in this

standard.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 15

Core Requirements

Minimizing the Attack Surface

The attack surface of the software is minimized. Confidentiality and integrity of all software critical assets are protected, and all

unnecessary features and functions are removed or disabled.

Control Objectives Test Requirements Guidance

Control Objective 1: Critical Asset Identification

All software critical assets are identified and classified.

1.1 All sensitive data stored,

processed, or transmitted by the

software is identified.

1.1.a The assessor shall examine evidence to confirm that

information is maintained that details all sensitive data that is

stored, processed, and/or transmitted by the software. At a

minimum, this shall include all payment data; authentication

credentials; cryptographic keys and related data (such as IVs

and seed data for random number generators); and system

configuration data (such as registry entries, platform

environment variables, prompts for plaintext data in software

allowing for the entry of PIN data, or configuration scripts).

Software security controls are designed and

implemented to protect the confidentiality and/or

integrity of critical assets. To make sure these

controls are effective and appropriate, the software

vendor should identify all sensitive data the software

collects, stores, processes, or transmits, as well as

all sensitive functions and resources it either

provides or uses.

 1.1.b The assessor shall examine evidence to confirm that

information is maintained that describes where sensitive data is

stored. This includes the storage of sensitive data in temporary

storage (such as volatile memory), semi-permanent storage

(such as RAM disks), non-volatile storage (such as magnetic

and flash storage media), or in specific locations or form factors

(such as with an embedded system that is only capable of local

storage).

 1.1.c The assessor shall examine evidence to confirm that

information is maintained that describes the security controls

that are implemented to protect sensitive data.

 1.1.d The assessor shall test the software to validate the

evidence obtained in Test Requirements 1.1.a through 1.1.c.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 16

Control Objectives Test Requirements Guidance

 1.1.e The assessor shall examine evidence and test the

software to identify the transaction types and/or card data

elements that are supported by the software, and to confirm

that the data for all of these is supported by the evidence

examined in Test Requirements 1.1.a through 1.1.c.

 1.1.f The assessor shall examine evidence and test the

software to identify the cryptographic implementations that are

supported by the software (including cryptography used for

storage, transport, and authentication), and to confirm that the

cryptographic data for all of these implementations is supported

by the evidence examined in Test Requirements 1.1.a through

1.1.c, and that the evidence describes whether these are

implemented by the software itself, through third-party software,

or as functions of the execution environment.

 1.1.g The assessor shall examine evidence and test the

software to identify the accounts and authentication credentials

supported by the software (including both default and user

created accounts) and to confirm that these accounts and

credentials are supported by the evidence examined in Test

Requirements 1.1.a through 1.1.c.

 1.1.h The assessor shall examine evidence and test the

software to identify the configuration options provided by the

software that can impact sensitive data (including those

provided through separate files or scripts, internal functions, or

menus and options), and to confirm that these are supported by

the evidence examined in Test Requirements 1.1.a through

1.1.c.

1.2 All sensitive functions and

sensitive resources provided or

used by the software are identified.

1.2.a The assessor shall examine evidence to confirm that

information is maintained that details all sensitive functions and

sensitive resources provided or used by the software. At a

minimum, this shall include all functions that are designed to

store, process, or transmit sensitive data and those services,

configuration files, or other information necessary for the normal

and secure operation of those functions.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 17

Control Objectives Test Requirements Guidance

 1.2.b The assessor shall examine evidence to confirm that

information is maintained that clearly describes how and where

the sensitive data associated with these functions and

resources is stored. This includes the storage of sensitive data

in temporary storage (such as volatile memory), semi-

permanent storage (such as RAM disks), and non-volatile

storage (such as magnetic and flash storage media). The

assessor shall confirm that this information is supported by the

evidence examined in Test Requirement 1.1.a through 1.1.c.

 1.2.c Where the sensitive functions or sensitive resources are

provided by third-party software or systems, the assessor shall

examine evidence and test the software to confirm that the

software correctly follows available guidance for the third-party

software.

Note: For example, by reviewing the security policy of a PTS or

FIPS140-2 or 140-3 approved cryptographic system.

1.3 Critical assets are classified. 1.3 The assessor shall examine evidence to confirm that:

• The software vendor defines criteria for classifying critical

assets in accordance with the confidentiality, integrity, and

resiliency requirements for each critical asset.

• An inventory of all critical assets with appropriate

classifications is maintained.

Critical assets represent the sensitive data,

functions, and resources that have business value

and require confidentiality, integrity, or resiliency

protection.

There are numerous analysis techniques that can be

used to identify critical assets, including Mission

Impact Analysis (MIA), Functional Dependency

Network Analysis (FDNA), and Mission Threat

Analysis. Additional information and techniques can

be found in publications such as the appendices of

NIST Special Publication 800-160 or in other

publications from industry standards bodies such as

EMVCo, ISO or ANSI.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 18

Control Objectives Test Requirements Guidance

Control Objective 2: Secure Defaults

Default privileges, features, and functions are restricted to only those necessary to provide a secure default configuration.

2.1 All functions exposed by the

software are enabled by default only

when and where it is a documented

and justified part of the software

architecture.

2.1.a The assessor shall examine evidence and test the

software to identify any software APIs or other interfaces that

are provided or exposed by default upon installation,

initialization, or first use. For each of these interfaces, the

assessor shall confirm that the vendor has documented and

justified its use as part of the software architecture. Testing

shall include methods to reveal any exposed interfaces or other

software functionality (such as scanning for listening services

where applicable).

Note: This includes functions that are auto-enabled as required

during operation of the software.

Software often contains functionality (for example,

web services, administrative interface, application

heartbeat, etc.) that is optional and is generally

unused by many users. This functionality typically

does not receive the same attention as standard or

essential software functions and services, and often

contains security weaknesses that can be exploited

by malicious users to bypass security controls.

To ensure a secure software deployment, the

software’s default configuration should only expose

functionality that has been reviewed, justified, and

approved. This should include the default

configuration for all software APIs, protocols,

daemons, listeners, components, etc.

Any unnecessary services, protocols, or ports

should be disabled or removed.

For guidance on services, protocols, or ports

considered to be insecure, refer to industry

standards and guidance (for example, NIST, ENISA,

etc.).

 2.1.b The assessor shall test the software to determine whether

any of the interfaces identified in Test Requirement 2.1.a rely

on external resources for authentication. Where such resources

are relied upon, the assessor shall examine evidence to confirm

that methods are implemented to ensure that proper

authentication remains in place and that these methods are

included in the assessment of other applicable requirements in

this standard.

 2.1.c The assessor shall test the software to determine whether

any of the interfaces identified in Test Requirement 2.1.a rely

on external resources for the protection of sensitive data during

transmission. Where such resources are relied upon, the

assessor shall examine evidence to confirm that methods are

implemented to ensure proper protection remains in place and

that these methods are included in the assessment of other

applicable requirements in this standard.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 19

Control Objectives Test Requirements Guidance

 2.1.d The assessor shall test the software to determine whether

any of the interfaces identified in Test Requirement 2.1.a

expose functions or services that have publicly disclosed

vulnerabilities by conducting a search on the exposed

protocols, methods, or services in public vulnerability

repositories such as that maintained within the National

Vulnerability Database.

 2.1.e Where known vulnerabilities in exposed interfaces exist,

the assessor shall examine evidence and test the software to

confirm the following:

• Methods are implemented to mitigate the exploitation of

these weaknesses.

• The risks posed by the use of known vulnerable protocols,

functions, or ports is documented.

• Clear and sufficient guidance on how to correctly

implement sufficient security to meet applicable control

objectives in this standard is provided to stakeholders in

accordance with Control Objective 12.1.

Note: The assessor should reference the vendor threat

information defined in Control Objective 4.1 for this item.

 2.1.f The assessor shall examine evidence to identify any third-

party modules used by the software and to confirm that any

such functions exposed by each module are disabled, unable to

be accessed through mitigation methods implemented by the

software, or formally documented and justified by the software

vendor.

Where access to third-party functions is prevented through

implemented protection methods, the assessor shall test the

software to confirm that it does not rely on a lack of knowledge

of such functions as a security mitigation method by simply not

documenting an otherwise accessible API interface and to

confirm that the protection methods are effective at preventing

the insecure use of such third-party functions.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 20

Control Objectives Test Requirements Guidance

2.2 All software security controls,

features, and functions are enabled

upon software installation,

initialization, or first use.

Note: Specific software security

controls required to protect the

integrity and confidentiality of

sensitive data, sensitive functions,

and sensitive resources are

captured in the Software Protection

Mechanisms section.

2.2.a The assessor shall examine evidence and test the

software to identify all software security controls, features and

functions relied upon by the software for the protection of critical

assets and to confirm that all are enabled upon installation,

initialization, or first use of the software.

As previously noted earlier in guidance, software

security controls are designed and implemented to

protect the confidentiality and integrity of critical

assets. Examples of such software security controls

include authentication and authorization

mechanisms, cryptographic controls, and controls to

prevent leakage of sensitive data.

Default software settings should result in a secure

software configuration and should not rely on the

end-user being a subject-matter expert to ensure a

secure configuration. To that effect, all available

software security controls should be active upon

software installation, initialization, or first use,

depending upon how the software is deployed.

2.2.b Where any software security controls, features and

functions are enabled only upon initialization or first use, the

assessor shall test the software to confirm that sensitive data is

processed only after this initialization process is complete.

 2.2.c Where user input or interaction is required to enable

software security controls, features, or functions (such as the

installation of certificates), the assessor shall examine evidence

to confirm that clear and sufficient guidance on configuring

these options is provided to stakeholders in accordance with

Control Objective 12.1.

2.3 Default authentication

credentials or keys for built-in

accounts are not used after

installation, initialization, or first use.

2.3.a The assessor shall examine evidence to identify the

default credentials, keys, certificates, and other critical assets

used for authentication by the software.

Note: The assessor should refer to evidence obtained in the

testing of Control Objectives 1, 5, and 7 to determine the

authentication and access control mechanisms, keys, and other

critical assets used for authentication.

To protect against unauthorized access, payment

software should prevent the use of built-in accounts

until the default authentication credentials can be

changed.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 21

Control Objectives Test Requirements Guidance

 2.3.b The assessor shall test the software to confirm that all

default credentials, keys, certificates, and other critical assets

used for authentication by the software are supported by the

evidence examined.

Note: It is expected that this analysis will include, but not

necessarily be limited to, the use of entropy analysis tools to

look for hardcoded cryptographic keys, searches for common

cryptographic function call and structures such as S-Boxes and

big-number library functions (and tracing these functions

backwards to search for hardcoded keys), as well as checking

for strings containing common user account names or

password values.

Built-in accounts with known credentials such as

default or empty passwords, or default keys are

often overlooked during installation, initial

configuration, or use, and can be used by a

malicious user to bypass access controls. Therefore,

the software should not use or rely on the default

credentials for its operation upon installation,

initialization, or first use.

 2.3.c Where user input or interaction is required to disable or

change any authentication credentials or keys for built-in

accounts, the assessor shall examine evidence to confirm that

guidance on configuring these options is provided to

stakeholders in accordance with Control Objective 12.1.

 2.3.d The assessor shall test the software to confirm that

default authentication credentials or keys for built-in accounts

are not used by the authentication and access control

mechanisms implemented by the software after software

installation, initialization, or first use.

Note: The assessor should refer to evidence obtained in the

testing of Control Objective 5 to determine the authentication

and access control mechanisms implemented by the software.

 2.3.e The assessor shall test the software to confirm that

cryptographic keys used for authentication are not used for

other purposes, such as protecting sensitive data during

storage and transmission.

Note: The assessor should refer to evidence obtained in the

testing of Control Objective 6 to determine the software security

controls implemented to protect sensitive data.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 22

Control Objectives Test Requirements Guidance

2.4 The privileges and resources

requested by the software from its

execution environment are limited to

those necessary for the operation of

the software.

2.4.a The assessor shall examine evidence to identify the

privileges and resources required by the software and to

confirm that information is maintained that describes and

reasonably justifies all privileges and resources required,

including explicit permissions for access to resources, such as

cameras, contacts, etc.

In many attacks on software or underlying systems,

the software is often used to execute functions on

the underlying operating systems or to abuse

accessible external resources. When the software

requires excessive permissions, such permissions

may be exploited by a malicious user.

To minimize the software’s attack surface, the

software should only request and be granted the

minimum required privileges for its intended

operation. For example, system service accounts

that the software uses to operate, or accounts used

by the software to access underlying components

such as a database or invoke web-services calls

should not require permissions that exceed the

minimum necessary for the software to perform its

operations.

The same concept applies to resources used by the

software. The software should be granted access to

only the minimum required resources for its

expected operation. For example, mobile

applications that do not require access to the

camera or photographs should not request such

access unless they are a necessary part of the

software architecture. Similarly, software should not

have access to sensitive files (for example,

/etc/passwd) unless there is a legitimate need for the

software to access those files.

 2.4.b Where limiting access is not possible due to the

architecture of the solution or the execution environment in

which the software is executed the assessor shall examine

evidence to identify all mechanisms implemented by the

software to prevent unauthorized access, exposure, or

modification of critical assets, and to confirm that guidance on

properly implementing and configuring these mechanisms is

provided to stakeholders in accordance with Control Objective

12.1.

 2.4.c The assessor shall test the software to confirm that

access permissions and privileges are assigned according to

the evidence examined in Test Requirement 2.4.a. The

assessor shall, where possible, use suitable tools for the

platform on which the software is installed to review the

permissions and privileges of the software itself, as well as the

permissions and privileges of any resources, files, or additional

elements generated or loaded by the software during use.

Note: Where the above testing is not possible, the assessor

shall justify why this is the case and that the testing that has

been performed is sufficient.

 2.4.d Where the software execution environment provides

legacy features for use by older versions of the software, the

assessor shall examine evidence and test the software to

confirm that these are not used, and that only recent and

secured functionality is implemented. For example, software

should “target” the latest versions of APIs provided by the

environment on which they run, where available.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 23

Control Objectives Test Requirements Guidance

2.5 Default privileges for built-in

accounts are limited to those

necessary for their intended

purpose and function.

2.5.a The assessor shall examine the evidence to identify all

default accounts provided by the software and to confirm that

the privileges assigned to these accounts are justified and

reasonable.

In support of the principle of “least privilege,” built-in

accounts should only have the privileges required for

the intended function of the account, including

access to sensitive data and resources as well as

the ability to execute sensitive functions. For

example, a built-in administrator account may

require the ability to configure the software and

associated user accounts, but not the ability to

access areas containing sensitive data.

Applying the principle of least privilege to user

accounts helps prevent users without sufficient

knowledge about the software from incorrectly or

accidentally changing the software configuration or

its security settings. Enforcing least privilege also

helps to minimize the effects of unauthorized access

to software user accounts.

To limit access to sensitive data, functions, and

resources to only those accounts that require such

access, the level of privilege and access required

should be defined and documented for each built-in

account in an access matrix such that its assigned

functions may be performed, but no additional or

unnecessary access or privileges are granted.

 2.5.b The assessor shall test the software to confirm that all

default accounts provided or used by the software are

supported by the evidence examined in Test Requirement

2.5.a.

 2.5.c The assessor shall examine evidence and test the

software to confirm that exposed interfaces, such as APIs, are

protected from attempts by unauthorized users to modify

account privileges and elevate user access rights.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 24

Control Objectives Test Requirements Guidance

Control Objective 3: Sensitive Data Retention

Retention of sensitive data is minimized.

3.1 The software only retains the

sensitive data absolutely necessary

for the software to provide its

intended functionality.

3.1.a The assessor shall examine evidence to identify the

sensitive data that is collected by the software for use beyond

any one transaction, the default time period for which it is

retained, and whether the retention period is user-configurable,

and to confirm that the purpose for retaining the sensitive data

in this manner is justified and reasonable.

Note: The assessor should refer to evidence obtained in the

testing of Control Objective 1.1 to determine the sensitive data

retained by the software.

To prevent the unauthorized disclosure of sensitive

data to unauthorized parties, the software should

retain sensitive data only for the duration necessary

to perform the specific operation for which sensitive

data is collected. Retaining sensitive data longer

than required presents opportunity for the data to be

mishandled, misused, or accidentally disclosed.

This control objective differentiates between

transient sensitive data retained temporarily and

persistent sensitive data that is retained on a more

permanent basis. Examples of transient sensitive

data include the retention account data in memory

until payment authorization is received. Examples of

persistent sensitive data include the storage of

account data on disk to support recurrent payment

transactions.

 3.1.b The assessor shall test the software to confirm that all

available functions or services designed for the retention of

sensitive data are supported by the evidence examined in Test

Requirement 3.1.a.

Note: The assessor should refer to evidence obtained in the

testing of Control Objective 1.2 to determine the sensitive

functions and services provided or used by the software.

 3.1.c The assessor shall examine evidence and test the

software to determine whether the software facilitates the

storage of persistent sensitive data for the purposes of

debugging, error finding or testing of systems, and to confirm

that such data is protected during storage in accordance with

Control Objective 6.1. Any function that allows for storage of

sensitive data for these purposes must be explicitly enabled

through an interface that requires interaction and authorization

by the user and retains the data only for the duration necessary

in accordance with reasonable vendor criteria. Closure of the

software must result in termination of this debugging state, such

that it requires explicit re-enablement when the software is next

executed; and any sensitive data is securely deleted per

Control Objective 3.4.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 25

Control Objectives Test Requirements Guidance

 3.1.d Where user input or interaction is required to configure

the retention period of sensitive data, the assessor shall

examine evidence to confirm that guidance on configuring these

options is provided to stakeholders in accordance with Control

Objective 12.1.

3.2 Transient sensitive data is

retained only for the duration

necessary to fulfill a legitimate

business purpose.

3.2.a Using information obtained in Test Requirement 1.1.a, the

assessor shall examine evidence to identify all sensitive data

that is retained by the software for transient use, what triggers

the secure deletion of this data, and to confirm that the

purposes for retaining the data are justified and reasonable.

This includes data that is stored only in memory during the

operation of the software.

Sensitive data elements collected in conjunction with

software operations should only be retained for as

long as required to complete that operation or

related transaction.

After payment processing is complete, all transient

sensitive data should be securely deleted from all

locations where it has been retained such that any

subsequent process, component, function,

application, or user within the environment may not

access or capture the sensitive data.

Software vendors should also be aware of and

account for how other aspects of the software

architecture (such as the software-development

language and operating environment) may affect

how and where transient sensitive data is retained.

For example, operating-system usage of swap

partitions or virtual memory files can cause

information that should have been transient to

persist longer than intended.

If any sensitive data must be used for debugging or

troubleshooting purposes, the software should only

capture the minimum amount of data necessary and

store it securely in a known location.

 3.2.b Using information obtained in Test Requirement 1.2.a, the

assessor shall test the software to confirm that all available

functions or services that retain transient sensitive data are

supported by evidence examined in Test Requirement 3.2.a

and do not use immutable objects.

 3.2.c The assessor shall examine evidence and test the

software to determine whether the software facilitates the

storage of transient sensitive data for the purposes of

debugging, error finding or testing of systems, and to confirm

that such data is protected in accordance with Control Objective

6.1. Any function that allows for the storage of transient

sensitive data for these purposes must be explicitly enabled

through an interface that requires interaction and authorization

by the user. Closure of the software must result in termination

of this debugging state, such that it requires explicit re-

enablement when the software is next executed; and any

transient sensitive data is securely deleted in accordance with

Control Objective 3.4.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 26

Control Objectives Test Requirements Guidance

 3.2.d Where the retention of transient sensitive data requires

user input or interaction, the assessor shall examine evidence

to confirm that guidance on configuring these options is

provided to stakeholders in accordance with Control Objective

12.1.

3.3 The software protects the

confidentiality and integrity of

sensitive data (both transient and

persistent) during retention.

Note: The Software Protection

Mechanisms section includes

several specific software security

controls that are required to be

implemented to protect sensitive

data during storage, processing, or

transmission. Those software

security controls should be analyzed

to determine their applicability to the

types of sensitive data retained by

the software.

3.3.a The assessor shall examine the evidence to identify the

methods implemented to protect sensitive data during storage

and transmission.

The software should maintain security controls and

mechanisms to protect all sensitive data while it is

retained by the software. Examples of software

security controls include writing to a secure memory

location or using cryptography to render the data

unreadable.

3.3.b Where sensitive data is stored outside of temporary

variables within the code itself, the assessor shall test the

software to confirm that sensitive data is protected using either

strong cryptography or other methods that provide an

equivalent level of security.

3.3.c Where protection methods use cryptography, the

assessor shall examine vendor evidence and test the software

to confirm that the cryptographic implementation complies with

Control Objective 7 of this standard.

3.3.d Where sensitive data is protected using methods other

than strong cryptography, the assessor shall examine evidence

and test the software to confirm that the protections are present

in all environments where the software is designed to be

executed and are implemented correctly.

3.3.e Where user input or interaction is required to configure

protection methods, the assessor shall examine evidence to

confirm that guidance on configuring these options is provided

to stakeholders in accordance with Control Objective 12.1.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 27

Control Objectives Test Requirements Guidance

3.4 The software securely deletes

persistent sensitive data when it is

no longer required.

3.4.a The assessor shall examine evidence to identify the

methods implemented to render non-transient sensitive data

irretrievable and to confirm that sensitive data is rendered

unrecoverable after the process is complete.

Secure deletion is the process of rendering data

irretrievable to other people, processes, or systems.

Secure deletion may be required at the end of a

software-specific operation or upon completion of

user-specified retention requirements. In the latter

case, the software should be able to securely delete

the sensitive data after expiry of the user-specified

retention period.

Only in circumstances where the retention of

sensitive data is explicitly permitted should the data

be retained after transaction processing is complete.

 3.4.b The assessor shall examine evidence and test the

software to identify any platform or implementation level issues

that complicate the secure deletion of non-transient sensitive

data and to confirm that any non-transient sensitive data is

securely deleted using a method that ensures that the data is

rendered unrecoverable. Methods may include (but are not

necessarily limited to) overwriting the data, deletion of

cryptographic keys (of sufficient strength) that have been used

to encrypt the data, or platform specific functions that provide

for secure deletion. Methods must accommodate for platform

specific issues, such as flash wear-leveling algorithms or SSD

over-provisioning, which may complicate simple over-writing

methods.

 3.4.c The assessor shall test the software using forensic tools

to identify any non-transient sensitive data residue in the

execution environment, and to confirm that the methods

attested by the software vendor are correctly implemented and

applied to all sensitive data. This analysis should accommodate

for the data structures and methods used to store the sensitive

data (for example, by examining file systems at the allocation

level and translating data formats to identify sensitive data

elements) and cover all non-transient sensitive data types.

Note: Where forensic testing of some or all aspects of the

platform is not possible, the assessor should examine additional

evidence to confirm secure deletion of sensitive data. Such

evidence may include (but is not necessarily limited to) memory

and storage dumps from development systems, evidence from

memory traces from emulated systems, or evidence from

physical extraction of data performed on-site by the software

vendor.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 28

Control Objectives Test Requirements Guidance

3.5 Transient sensitive data is

securely deleted from temporary

storage facilities automatically by

the software once the purpose for

which it is retained is satisfied.

3.5.a The assessor shall examine evidence to identify the

methods implemented to render transient sensitive data

irretrievable and to confirm that sensitive data is unrecoverable

after the process is complete.

Note: This includes data which may be stored only temporarily

in program memory / variables during operation of the software.

Where sensitive data is only retained temporarily to

perform a specific function (such as a payment

transaction), mechanisms are required to securely

delete the sensitive data once the specific function

has completed.

Transient sensitive data is often erased from

temporary storage locations after processing is

complete. However, that data may remain resident

in volatile memory (RAM) or in other storage

locations for longer periods than anticipated (such

as in swap files/partitions or log files).

Software vendors should account for all locations

where sensitive data is stored, regardless of the

intended duration of storage, and ensure that such

data is securely deleted once the purpose for which

the software collected the data has been satisfied.

 3.5.b The assessor shall examine evidence and test the

software to identify any platform or implementation level issues

that complicate the erasure of such transient sensitive

data such as abstraction layers between the code and the

hardware execution environment and to confirm that methods

have been implemented to minimize the risk posed by these

complications.

 3.5.c The assessor shall test the software to identify any

sensitive data residue in the execution environment and to

confirm that the methods implemented are implemented

correctly and enforced for all transient sensitive data. This

analysis should accommodate for the data structures and

methods used to store the sensitive data (for example, by

examining file systems at the allocation level and translating

data formats to identify sensitive data elements) and cover all

non-transient sensitive data types.

Note: Where forensic testing of some or all aspects of the

platform is not possible, the assessor should examine additional

evidence to confirm secure deletion of sensitive data. Such

evidence may include (but is not necessarily limited to) memory

and storage dumps from development systems, evidence from

memory traces from emulated systems, or evidence from

physical extraction of data performed on-site by the software

vendor.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 29

Control Objectives Test Requirements Guidance

3.6 The software does not disclose

sensitive data through unintended

channels.

3.6.a The assessor shall examine evidence to confirm the

software vendor has performed a thorough analysis to account

for all sensitive data disclosure attack vectors including, but not

limited to:

• Error messages, error logs, or memory dumps.

• Execution environments that may be vulnerable to remote

side-channel attacks to expose sensitive data, such as

attacks that exploit cache timing or branch prediction

within the platform processor.

• Automatic storage or exposure of sensitive data by the

underlying execution environment, such as through swap-

files, system error logging, keyboard spelling, and auto-

correct features.

• Sensors or services provided by the execution

environment that may be used to extract or leak sensitive

data, such as through use of an accelerometer to capture

input of a passphrase to be used as a seed for a

cryptographic key, or through capture of sensitive data

through use of cameras or near-field communication

(NFC) interfaces.

Proactive measures to ensure that sensitive data is

not inadvertently “leaked” should be implemented by

the software vendor or within the software.

Disclosure of sensitive data to unauthorized parties

often occurs through unknown or unintended outputs

or channels. For example: sensitive data could be

unintentionally disclosed through error- or exception-

handling routines, logging or debugging channels,

third-party services and/or components, or through

the use of shared resources such as memory, disk,

files, keyboards, displays, and functions.

Protective mechanisms, whether process or

programmatic in nature, should be implemented to

ensure that sensitive data is not accidentally

disclosed through such means.

 3.6.b The assessor shall examine evidence, including the

results of the analysis described in Test Requirement 3.6.a, and

test the software to confirm that methods are implemented to

protect against unintended disclosure of sensitive data. Such

methods may include usage of cryptography to protect the data,

or the use of blinding or masking of cryptographic operations

(where supported by the execution environment).

 3.6.c Where protection methods require user input or

interaction, the assessor shall examine evidence to confirm that

guidance on the proper configuration and use of such methods

is provided to stakeholders in accordance with Control

Objective 12.1.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 30

Control Objectives Test Requirements Guidance

 3.6.d The assessor shall test the software to identify any

sensitive data residue in the execution environment, and

confirm that protection methods are implemented correctly and

that the software does not expose or otherwise reveal sensitive

data to unauthorized users.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 31

Software Protection Mechanisms

Software security controls are implemented to protect the integrity and confidentiality of critical assets.

Control Objectives Test Requirements Guidance

Control Objective 4: Critical Asset Protection

Critical assets are protected from attack scenarios.

4.1 Attack scenarios applicable to

the software are identified.

Note: This control objective is an

extension of Control Objective 10.1.

Validation of both control objectives

should be performed at the same

time.

4.1.a The assessor shall examine evidence to confirm that the

software vendor has identified and documented relevant attack

scenarios for the software.

Software vendors should evaluate the design of their

payment software to identify attack scenarios

applicable to the software and should document the

results of that analysis. Documentation should

describe the various aspects of the code that could be

attacked (including tasks or actions that frameworks

and libraries do on the software’s behalf), the difficulty

in mounting a successful attack, the mitigation

techniques used to protect against such attacks, and

the methodology used for measuring the likelihood

and impact of each potential attack method.

Where the software relies on execution environment

security controls, the software vendor should review

and reference the implementation documentation for

the platform (such as the Security Policies for PCI-

approved POI devices or FIPS140-2 or 140-3

approved cryptographic modules) and should confirm

that the software and its associated documentation

correctly and completely accommodate the guidance

in these documents.

4.1.b The assessor shall examine evidence to determine

whether any specific industry-standard methods or guidelines

were used to identify relevant attack scenarios.

Where such industry standards are not used, the assessor shall

confirm that the methodology used provides equivalent coverage

for the attack scenarios applicable to the software under

evaluation.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 32

Control Objectives Test Requirements Guidance

 4.1.c The assessor shall examine the evidence to confirm the

following:

• A formal owner of the software is assigned. This may be a

role for a specific individual or a specific name, but

evidence must clearly show an individual who is

accountable for the security of the software.

• A methodology is defined for measuring the likelihood and

impact for any exploit of the system.

• Generic threat methods and types that may be applicable

to the software are documented.

• All critical assets managed and all sensitive resources

used by the system are documented.

• All entry and egress points for sensitive data, as well as the

authentication and trust model applied to each of these

entry/egress points, are documented.

• All data flows, network segments, and

authentication/privilege boundaries are documented.

• All static IPs, domains, URLs, or ports required by the

software for operation are documented.

• Considerations for cryptography elements like cipher

modes, and protecting against relevant attacks such as

timing attacks, padded oracles, brute force, “rainbow table”

attacks, and dictionary attacks against the input domain

are documented.

• Execution environment implementation specifics or

assumptions, such as network configurations and

operating system security configurations, are documented.

• Considerations for the software execution environment, the

size of the install base, and the attack surfaces that must

be mitigated are documented. Examples of such attack

surfaces may include insecure user prompts or protocol

stacks, or the storage of sensitive data post authorization

or using insecure methods.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 33

Control Objectives Test Requirements Guidance

4.2 Software security controls are

implemented to mitigate software

attacks.

4.2.a The assessor shall examine evidence to confirm that one

or more mitigation methods are defined for each of the threats

identified in Test Requirement 4.1.a or that justification for the

lack of mitigations is provided.

Once attack scenarios are identified, the risk of their

occurrence should be mitigated. Software vendors

should define and implement mechanisms to protect

the software from attacks and reduce the likelihood

and impact of successful execution. Any attack

scenarios left unmitigated or insufficiently mitigated

should be reasonably justified.

The exact nature of the protection mechanism(s) will

depend on the attack scenarios, the development

platform, and the software-development languages,

frameworks, libraries, and APIs used by the software,

as well as the execution environment where the

software is intended to be deployed.

To minimize the software attack surface, the software

should be developed using secure design principles

such as layered defense, application segmentation

and isolation (logical), and adaptive response.

Examples of software security controls include input

and output validation, authentication,

parameterization, escaping, segmentation, logging,

etc. For guidance on implementing cyber resiliency

techniques and approaches, refer to industry

standards and guidance such as the current version of

NIST Special Publication 800-160.

 4.2.b Where any mitigations rely on settings within the software,

the assessor shall test the software to confirm that such settings

are applied by default upon installation, initialization, or first use

of the software.

 4.2.c Where user input or interaction can disable, remove, or

bypass any such mitigations, the assessor shall examine

evidence and test the software to confirm that such action

requires authentication and authorization and that guidance on

the risk of such actions is provided to stakeholders in

accordance with Control Objective 12.1.

 4.2.d When any mitigations rely on features of the execution

environment, the assessor shall examine evidence to confirm

that guidance is provided to stakeholders on how to enable such

settings in accordance with Control Objective 12.1.

 4.2.e Where the execution environment provides APIs to query

the status of mitigation controls, the assessor shall test the

software to confirm that software checks for these mitigations

are in place and active prior to being launched and periodically

throughout execution.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 34

Control Objectives Test Requirements Guidance

Control Objective 5: Authentication and Access Control

The software implements robust authentication and access control methods to protect the confidentiality, integrity, and resiliency of critical assets.

5.1 Access to critical assets is

authenticated.

5.1.a The assessor shall examine evidence to confirm that

authentication requirements are defined (i.e., type and number
of factors) for all roles based on critical asset classification, the
type of access (e.g., local, non-console, remote) and level of
privilege.

Note: The assessor should refer to evidence obtained in the

testing of Control Objective 1.3 to determine the classifications

for all critical assets.

Secure authentication ensures individual responsibility

for actions and allows the software to maintain an
effective audit trail of user activity. This expedites
issue resolution and containment when the software is
misused for malicious purposes.

Authentication mechanisms should cover all non-

public resources managed by or accessible through

the software, as well as sensitive functions that can

alter the software operation or impact the security of

sensitive data and sensitive resources. Examples of

authentication methods include:

• Something you know, such as a password or
passphrase

• Something you have, such as a token device or
smart card

• Something you are, such as a biometric

To ensure that the implemented authentication

mechanisms are adequate to address the risk of

unauthorized access to sensitive data or sensitive

resources, or misuse of a sensitive function, the

vendor should analyze threats and identify the

required level of authentication for all types of users

and roles.

For example, a user with limited access to sensitive

data and sensitive resources could be required to

perform authentication using a single authentication

factor (for example, a password or a passphrase)

while a user that is able to export the entire database

might be required to perform multi-factor

authentication.

(continued on next page)

 5.1.b The assessor shall examine evidence and test the

software to confirm that access to critical assets is authenticated

and authentication mechanisms are implemented correctly.

 5.1.c Where the software recommends, suggests, relies on, or

otherwise supports the use of external mechanisms (such as

third-party VPNs, remote desktop features, etc.) to provide

secure non-console access to the system on which the software

is executed or directly to the software itself, the assessor shall

examine evidence to confirm that guidance on how to configure

authentication mechanisms correctly is provided to stakeholders

in accordance with Control Objective 12.1.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 35

Control Objectives Test Requirements Guidance

 5.1.d The assessor shall examine evidence to confirm that

sensitive data associated with authentication credentials,

including public keys, is identified as a critical asset.

Other factors such as the type of access (for example,

local, non-console, or remote access) and the level of

privilege (for example, the ability to invoke sensitive

functions such as pause logging or change access

privileges) may influence the level of authentication

that should be required.

5.2 Access to critical assets requires

unique identification.

5.2.a The assessor shall examine evidence and test the

software to confirm that all implemented authentication methods

require unique identification.

The software should not require the use of any group,

shared, or generic accounts. The use of group or

shared accounts makes it more difficult to determine

which individuals execute specific actions since a

given action could have been performed by anyone

that has knowledge of the group or shared accounts’

authentication credentials.

 5.2.b Where interfaces, such as APIs, allow for automated

access to critical assets, the assessor shall examine evidence

and test the software to confirm that unique identification of

different programs or systems accessing the critical assets is

required (for example, through use of multiple public keys) and

that guidance on configuring a unique credential for each

program or system is provided to stakeholders in accordance

with Control Objective 12.1.

 5.2.c Where identification is supplied across a non-console

interface, the assessor shall test the software to confirm that

authentication credentials are protected from attacks that

attempt to intercept them in transit.

 5.2.d The assessor shall examine evidence to confirm that the

guidance provided to stakeholders per Control Objective 12.1

specifically notes that identification and authentication

parameters must not be shared between individuals, programs,

or in any way that prevents the unique identification of each

access to a critical asset.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 36

Control Objectives Test Requirements Guidance

5.3 Authentication methods

(including session credentials) are

sufficiently strong and robust to

protect authentication credentials

from being forged, spoofed, leaked,

guessed, or circumvented.

5.3.a Using information obtained in Test Requirement 4.1.a, the

assessor shall examine evidence to confirm that authentication

methods implemented by the software are evaluated to identify

known vulnerabilities or attack methods involving the

authentication method and how the implementation of these

methods mitigates against such attacks. The assessor shall also

confirm that the evidence examined demonstrates the

implementation used in the software was considered. For

example, a fingerprint may be uniquely identifiable to an

individual, but the ability to spoof or otherwise bypass such

technology can be highly dependent on the way the solution is

implemented.

The software vendor must evaluate, document, and

justify the usage of implemented authentication

methods to demonstrate that they are sufficiently

strong to protect authentication credentials in the

software’s intended specific use case or deployment

scenario.

For example, if the software uses biometric

authentication, the vendor may want to identify all

points at which a malicious user may attack the

authenticator and implement mitigations to address

those risks. The authentication mechanism

implemented in the software could rely on additional

sensors to ensure the provided biometric sample is

from a living human and not a forged or spoofed

sample.

In some use cases or deployment scenarios, an

authentication mechanism that relies on a single

authentication method may not be sufficient. In such

circumstances, the software vendor may want to

implement additional mitigation strategies (for

example, multi-factor authentication mechanism).

To support a claim that the implemented

authentication mechanism is sufficiently strong and

robust, a vendor should adopt an industry-accepted

methodology for assigning assurance levels (for

example, NIST SP800-63-3 and NIST SP800-63B).

 5.3.b The assessor shall examine evidence to confirm that the

implemented authentication methods are robust, and that the

robustness of the authentication methods was evaluated using

industry-accepted methods.

Note: The vendor assessment and robustness justification

include consideration of the full path of the user credentials, from

any input source (such as a Human Machine Interface or other

program), through transition to the execution environment of the

software (including any switched/network transmissions and

traversal through the execution environment’s software stack

before being processed by the software itself).

 5.3.c The assessor shall test the software to confirm that the

authentication methods are implemented correctly and do not

expose vulnerabilities.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 37

Control Objectives Test Requirements Guidance

5.4 By default, all access to critical

assets is restricted to only those

accounts and services that require

such access.

5.4.a The assessor shall examine evidence to confirm that

information is maintained that identifies and justifies the required

access for all critical assets.

To ensure the software protects the confidentiality and

integrity of critical assets, access privileges to those

critical assets should be restricted based on vendor-

defined access requirements. There are various

approaches to implementing privilege restriction, such

as trust-based privilege management, attribute-based

usage restriction, and dynamic privileges. To reduce

the attack surface of the software, the software

authorization mechanisms might limit access to critical

assets to only those accounts that need such access

(the principle of “least privilege”). Other techniques

include implementation of Role-Based Access Control

(RBAC), Attribute-Based Access Control (ABAC),

time-based adjustment to privilege, and dynamic

revocation of access authorization.

 5.4.b The assessor shall examine evidence and test the

software to identify the level of access that is provided to critical

assets and to confirm that such access correlates with the

evidence examined in Test Requirement 5.4.a. Testing to

confirm access to critical assets is properly restricted should

include attempts to access critical assets through user accounts,

roles, or services which should not have the required privileges.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 38

Control Objectives Test Requirements Guidance

Control Objective 6: Sensitive Data Protection

Sensitive data is protected at rest and in transit.

6.1 Sensitive data is secured

anywhere it is stored.

6.1.a The assessor shall examine evidence to confirm that

protection requirements for all sensitive data are defined,

including requirements for rendering sensitive data with

confidentiality considerations unreadable anywhere it is stored

persistently.

Sensitive data must be protected wherever it is stored.

In some cases, the integrity may be the primary

concern. In other cases, it may be the confidentiality of

the sensitive data that must be protected. Sometimes,

both the integrity and confidentiality must be secured.

The type of data and the purpose for which it is

generated will often determine the need for integrity or

confidentiality protection. In all cases, those protection

requirements must be clearly defined.

In cases where the confidentiality of sensitive data is a

concern, it is imperative to know where and for how

long the data is retained. The vendor must have

details of all locations where the software may store

sensitive data, including in any underlying software or

systems, and documentation detailing the security

controls used to protect the data.

Sensitive data requiring confidentiality protection,

when stored persistently, must be protected to prevent

malicious or accidental access. Examples of methods

to render sensitive data unreadable include usage of a

one-way hash or the use of strong cryptography with

associated key-management processes.

(continued on next page)

 6.1.b The assessor shall examine evidence and test the

software to confirm that security controls are implemented to

protect sensitive data during storage and that they address all

defined protection requirements and identified attack scenarios.

Note: The assessor should refer to evidence obtained in the

testing of Control Objective 1.1 to determine all sensitive data

retained by the software, and Control Objective 4.1 to identify all

attack scenarios applicable to the software.

 6.1.c Where cryptography is used for securing sensitive data,

the assessor shall examine evidence and test the software to

confirm that methods implementing cryptography for securing

sensitive data comply with Control Objective 7.

 6.1.d Where index tokens are used for securing sensitive data,

the assessor shall examine evidence and test the software to

confirm that these are generated in a way that ensures there is

no correlation between the value and the sensitive data that is

being referenced (without access to the software to perform the

correlation as part of a formally defined and assessed feature of

that software, such as “de-tokenization”).

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 39

Control Objectives Test Requirements Guidance

 6.1.e Where protection methods rely on security properties of

the execution environment, the assessor shall examine evidence

and test the software to confirm that these security properties

are valid for all platforms where the software is intended to be

deployed.

Where the integrity of sensitive data is a concern,

strong cryptography with appropriate key-management

practices is one method that could be used to satisfy

integrity protection requirements during storage.

 6.1.f Where protection methods rely on security properties of

third-party software, the assessor shall examine evidence and

test the software to confirm that there are no unmitigated

vulnerabilities or issues with the software providing the security

properties.

6.2 Sensitive data is secured during

transmission.

6.2.a The assessor shall examine evidence to identify the

locations within the software where sensitive data is transmitted

outside of the physical execution environment and to confirm

protection requirements for the transmission of all sensitive data

are defined.

To prevent malicious individuals from intercepting or

diverting sensitive data while in transit, it must be

protected during transmission.

One method to protect sensitive data in transit is to

encrypt it using strong cryptography prior to

transmission.

Alternatively, the software could establish an

authenticated and encrypted channel using only

trusted keys and certificates (for authentication) and

appropriate encryption strength for the selected

protocols.

 6.2.b The assessor shall examine evidence and test the

software to confirm that for each of the ingress and egress

methods that allow for transmission of sensitive data outside of

the physical execution environment, the data is encrypted with

strong cryptography prior to transmission or is transmitted over

an encrypted channel using strong cryptography.

Note: The assessor should refer to evidence obtained in the

testing of Control Objective 1.1 to determine the sensitive data

stored, processed, or transmitted by the software.

 6.2.c Where third-party or execution-environment features are

relied upon for the security of the transmitted data, the assessor

shall examine evidence to confirm that guidance on how to

configure such features is provided to stakeholders in

accordance with Control Objective 12.1.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 40

Control Objectives Test Requirements Guidance

 6.2.d Where transport layer encryption is used to secure the

transmission of sensitive data, the assessor shall examine

evidence and test the software to confirm that all ingress and

egress methods enforce a secure version of the protocol with

end-point authentication prior to transmission.

 6.2.e Where the methods implemented for encrypting sensitive

data allow for the use of different types of cryptography or

different levels of security, the assessor shall examine evidence

and test the software, including capturing software

transmissions, to confirm the software enforces the use of strong

cryptography at all times during transmission.

6.3 Use of cryptography meets all

applicable cryptography

requirements within this standard.

6.3.a Where cryptography is relied upon (in whole or in part) for

the security of critical assets, the assessor shall examine

evidence and test the software to confirm that the use of

cryptography is compliant to Control Objective 7.

Note: The assessor should refer to Control Objective 7 to

identify all requirements for appropriate and correct

implementation of cryptography.

Wherever cryptography is used to meet software

security requirements in this standard, it must be done

in accordance with the specific security requirements

related to the use of cryptography (including those in

Control Objective 7).

For example, storing a cryptographic key used for

protecting sensitive data in a plaintext file would not be

considered sufficient security unless additional

controls are implemented to prevent the file containing

the cryptographic key from being accessed or modified

by, or exposed to unauthorized parties.

Further guidance on appropriate uses of cryptographic

algorithms can be found in current versions of NIST

SP 800-175 or in other related industry guidance from

ISO or ANSI.

 6.3.b Where cryptographic methods provided by third-party

software or aspects of the execution environment or platform on

which the application is run are relied upon for the protection of

sensitive data, the assessor shall examine evidence and test the

software to confirm that guidance on configuring these methods

during the installation, initialization, or first use of the software is

provided to stakeholders in accordance with Control Objective

12.1.

 6.3.c Where asymmetric cryptography such as RSA or ECC is

used for protecting the confidentiality of sensitive data, the

assessor shall examine evidence and test the software to

confirm that private keys are not used for providing

confidentiality protection to the data.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 41

Control Objectives Test Requirements Guidance

Control Objective 7: Use of Cryptography

Cryptography is used appropriately and correctly.

7.1 Industry-standard cryptographic

algorithms and methods are used for

securing critical assets. Industry-

standard cryptographic algorithms

and methods are those recognized

by industry-accepted standards

bodies such as NIST, ANSI, ISO,

and EMVCo. Cryptographic

algorithms and parameters that are

known to be vulnerable are not used.

7.1.a The assessor shall examine evidence to determine how

cryptography is used for the protection of critical assets and to

confirm that:

• Industry-standard cryptographic algorithms and modes of

operation are used.

• The use of any other algorithms is in conjunction with

industry-standard algorithms.

• The implementation of non-standard algorithms does not

reduce the equivalent cryptographic key strength provided

by the industry-standard algorithms.

Not all cryptographic algorithms are sufficient to

protect sensitive data. It is a well-established principle

in software security to utilize only recognized

cryptographic implementations based on current,

industry-accepted standards such as those from

industry bodies like NIST, ANSI, ISO, and EMVCo.

The use of proprietary cryptographic implementations

may increase the risk of data compromise as

proprietary implementations are often not subjected to

the same level of testing that industry-accepted

implementations have undergone. Only those

implementations that have been subjected to sufficient

testing (for example, by NIST, ANSI, or other

recognized industry bodies) should be used.

 7.1.b The assessor shall examine evidence, including the

vendor threat information obtained in Test Requirement 4.1.a,

and test the software to confirm that:

• Only documented cryptographic algorithms and modes of

operation are used in the software.

• Protection methods are implemented to mitigate common

attacks on cryptographic implementations (for example, the

use of the software as a decryption oracle, brute-force or

dictionary attacks against the input domain of the sensitive

data, the re-use of security parameters such as IVs, or the

re-encryption of multiple datasets using linearly applied key

values, such as XOR’d key values in stream ciphers or

one-time pads).

 7.1.c Where cryptographic implementations require a unique

value per encryption operation or session, the assessor shall

examine evidence and test the software to confirm that the

cryptographic implementations do not expose vulnerabilities. For

example, this may include the use of a unique IV for a stream

cipher mode of operation or a unique and random “k” value for a

digital signature.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 42

Control Objectives Test Requirements Guidance

 7.1.d Where padding is used prior to or during encryption, the

assessor shall examine evidence and test the software to

confirm that the encryption operation always incorporates an

industry-accepted standard padding method.

 7.1.e Where hash functions are used to protect sensitive data,

the assessor shall examine evidence and test the software to

confirm that:

• Only approved, collision-resistant hash algorithms and

methods are used for this purpose, and

• A salt value of appropriate strength that is generated using

a secure random number generator is used to ensure the

resultant hash has sufficient entropy.

Note: The assessor should refer to Control Objective 7.3 for

more information on secure random number generators.

7.2 The software supports industry-

standard key management

processes and procedures. Industry-

standard key management

processes and procedures are those

recognized by industry standards

bodies, such as NIST, ANSI, and

ISO.

7.2.a The assessor shall examine evidence to confirm that

information is maintained that describes the following for each

key specified in the inventory:

• Key label or name

• Key location

• Effective date

• Expiration date

• Key purpose/type

• Key generation method/algorithm used

• Key length

Whether implemented within or outside the software,

the manner in which cryptographic keys are managed

is a critical part of the continued security of payment

software and the sensitive data it handles.

While cryptographic key management processes are

often implemented as operational procedures, the

software should support secure key-management

practices based on industry standards or best

practices.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 43

Control Objectives Test Requirements Guidance

 7.2.b The assessor shall examine evidence and test the

software to validate the evidence examined in Test Requirement

7.2.a and to confirm that:

• All cryptographic keys that are used for providing security

to critical assets (confidentiality, integrity, and authenticity)

and other security services to the software have a unique

purpose, and that no key is used for both encryption and

authentication operations.

• All keys have defined generation methods, and no secret

or private cryptographic keys relied upon for security of

critical assets are shared between software instances,

except when a common secret or private key is used for

securing the storage of other cryptographic keys that are

generated during the installation, initialization, or first use

of the software (for example, white-box cryptography).

• All cryptographic keys have an equivalent bit strength of at

least 128 bits in accordance with industry standards.

• All keys have a defined crypto-period aligned with industry

standards, and methods are implemented to retire and/or

update each key at the end of the defined crypto-period.

• The integrity and confidentiality of all secret and private

cryptographic keys managed by the software are protected

when stored (for example, encrypted with a key-encrypting

key that is at least as strong as the data-encrypting key

and is stored separately from the data-encrypting key, or

as at least two full-length key components or key shares, in

accordance with an industry-accepted method).

• All keys have a defined generation or injection process,

and this process ensures sufficient entropy for the key.

• All key-generation functions must implement one-way

functions or other irreversible key-generation processes,

and no reversible key calculation modes (such as key

variants) are used to directly create new keys from an

existing key.

Industry-standard key management practices should

be applied to the following:

• Generation of strong cryptographic keys

• Secure cryptographic key distribution

• Secure cryptographic key storage

• Cryptographic key changes for keys that have

reached the end of their cryptoperiod

• Retirement or replacement of keys

• Enforcement of split knowledge and dual control

(when the software supports manual clear-text

cryptographic key-management operations)

• Prevention of unauthorized substitution of

cryptographic keys

• Provision of a mechanism to render irretrievable

any cryptographic key material or cryptogram

stored by the payment software

This requirement applies to keys used to encrypt

sensitive data and any respective key-encrypting keys.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 44

Control Objectives Test Requirements Guidance

 7.2.c Where cryptography is used to protect a key, the assessor

shall examine evidence and test the software to confirm that

security is not provided to any key by a key of lesser strength

(for example, by encrypting a 256-bit AES key with a 128-bit

AES key).

 7.2.d Where public keys are used by the system, the assessor

shall examine evidence and test the software to confirm that the

authenticity of all public keys is preserved.

 7.2.e Where public or white-box keys are not unique per

software instantiation the assessor shall examine evidence to

confirm that methods and procedures to revoke and/or replace

such keys (or key pairs) exist.

 7.2.f Where the software relies upon external files or other data

elements for key material, such as for public TLS certificates, the

assessor shall examine evidence to confirm that guidance on

how to install such key material, including details noting any

security requirements for such key material is provided to

stakeholders in accordance with Control Objective 12.1.

 7.2.g Where public keys are manually loaded or used as root

keys, the assessor shall examine evidence and test the software

to confirm that the keys are installed and stored in a way that

provides dual control (to a level that is feasible for the execution

environment), preventing a single user from replacing a key to

enable a man-in-the-middle attack or the allow for unauthorized

decryption of stored data. Where complete dual control is not

feasible (for example, due to a limitation of the execution

environment), the assessor shall confirm that the methods

implemented are appropriate to protect the public keys.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 45

Control Objectives Test Requirements Guidance

 7.2.h The assessor shall examine evidence to confirm that

secret and/or private keys are managed in a way that ensures

split knowledge over the key to a level that is feasible given the

platform on which the software is executed. Where absolute split

knowledge is not feasible, the assessor shall confirm that the

methods implemented are reasonable to protect secrets and/or

private keys.

7.3 All random numbers used by the

software are generated using only

industry standard random number

generation (RNG) algorithms or

libraries. Industry standard RNG

algorithms or libraries are those that

meet industry standards for sufficient

unpredictability (for example, NIST

Special Publication 800-22).

7.3.a The assessor shall examine evidence and test the

software to identify all random number generators used by the

software and to confirm that all random number generation

methods:

• Use at least 128 bits of entropy prior to the output of any

random numbers.

• Ensure it is not possible for the system to provide or

produce reduced entropy upon start-up or entry of other

predictable states of the system.

Random numbers are often used with cryptography to

protect sensitive information. Encryption keys and

initialization values (seeds) are examples of

implementations in which random numbers are

required.

It is not a trivial endeavor to design and implement a

secure random number generator. Software vendors

are required to use only approved random number

generation algorithms and libraries or provide

evidence to illustrate how the random number

generation algorithms and libraries were tested to

confirm that random numbers generated are

sufficiently unpredictable.

The implementation may rely on either a validated

cryptographic library or module. The software vendor

should have a good understanding of the installation,

initialization, configuration, and usage (for example,

initial seeding of the random function) of the RNG

mechanisms to ensure that the implementation can

meet the effective security strength required for the

intended use.

 7.3.b Where third-party software, platforms, or libraries are used

for all or part of the random number generation process, the

assessor shall examine evidence (such as current publicly

available literature) to confirm that the third-party software does

not expose any vulnerabilities that may compromise its use for

generating random values.

 7.3.c Where the software vendor relies on a previous

assessment of the random number generator or source of initial

entropy, the assessor shall examine evidence (such as the

approval records of the previous assessment) to confirm that

this scheme and specific approval include the correct areas of

the software in the scope of its assessment, and that the vendor

claims do not exceed the scope of the evaluation or approval of

that software. For example, some cryptographic

implementations approved under FIPS 140-2 or 140-3 require

seeding from an external entropy source to correctly output

random data.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 46

Control Objectives Test Requirements Guidance

 7.3.d Where the software vendor does not rely on a previous

assessment of the random number generator or source of initial

entropy, the assessor shall test the software to obtain 128MB of

data output from each random number generator implemented

in the system to confirm the lack of statistical correlation in the

output. This data may be generated by the assessor directly, or

supplied by the vendor, but the assessor must confirm that the

generation method implemented ensures that the data is

produced as it would be produced by the software during normal

operation.

Note: The assessor can use the NIST Statistical Test Suite to

identify statistical correlation in the random number generation

implementation.

7.4 Random values have entropy

that meets the minimum effective

strength requirements of the

cryptographic primitives and keys

that rely on them.

7.4.a The assessor shall examine evidence and test the

software to confirm that the methods used for the generation of

all cryptographic keys and other material (such as IVs, “k” values

for digital signatures, and so on) have entropy that meets the

minimum effective strength requirements of the cryptographic

primitives and keys.

Entropy is the degree of randomness of a random

value generator. The higher the entropy, the less

predictable the next value in a random number

generator is likely to be.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 47

Control Objectives Test Requirements Guidance

 7.4.b Where cryptographic keys are generated through

processes which require direct user interaction, such as through

the entry of a passphrase or the use of “random” user interaction

with the software, the assessor shall examine evidence and test

the software to confirm that these processes are implemented in

such a way that they provide sufficient entropy. Specifically, the

assessor shall confirm that:

• Methods used for generating keys directly from a

password/passphrase enforce an input domain that is able

to provide sufficient entropy, such that the total possible

inputs are at least equal to that of the equivalent bit

strength of the key being generated (for example, a 32-

hex-digit input field for an AES128 key).

• Passphrases are passed through an industry-standard key-

derivation function, such as PBKDF2 or bcrypt, which

extends the work factor for any attempt to brute-force a

passphrase value. The assessor shall confirm that a work

factor of at least 10,000 is applied to any such

implementation.

• Guidance is provided to stakeholders in accordance with

Control Objective 12.1 that includes instructions that any

passphrase used must:

– Be randomly generated itself using a valid and

secure random process, and that an online random

number generator must not be used for this purpose.

– Not be implemented by a single person, such that

one person has an advantage in recovering the clear

key value, violating the requirements for split

knowledge.

Note that a non-deterministic random number

generator (NDRG) may produce an output string that

contains less entropy than implied by the length of the

output. A deterministic random number generator

(DRNG) is dependent on the entropy of its seed value.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 48

Secure Software Operations

The software provides mechanisms to detect and alert on anomalous activity and to ensure user accountability.

Control Objectives Test Requirements Guidance

Control Objective 8: Activity Tracking

All software activities involving critical assets are tracked.

8.1 All access attempts and usage

of critical assets are tracked and

traceable to a unique user.

Note: This Secure Software

Standard recognizes that some

execution environments cannot

support the detailed logging

requirements in other PCI

standards. Therefore, the term

“activity tracking” is used here to

differentiate the expectations of this

standard with regards to logging

from similar requirements in other

PCI standards.

8.1 The assessor shall examine evidence and test the software

to confirm that all access attempts and usage of critical assets

are tracked and traceable to a unique individual, system, or

entity.

To ensure user accountability and to support post-

incident forensic investigation, payment software should

capture and maintain historical records of all software

activities involving critical assets and ensure that all

such activities are traceable to a unique user (for

example, a person, system, or other entity).

Examples of activities that the software should record

include:

• All individual user attempts to access sensitive

data or resources.

• Usage of or changes to sensitive functions, such

as the software’s identification and authentication

mechanisms or activity tracking mechanisms.

• Initialization, stopping, or pausing of sensitive

functions.

This control objective does not mandate the logging of

each encryption operation or function processing

sensitive data, but it does require that access is tracked

and any methods that may expose sensitive data are

also tracked.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 49

Control Objectives Test Requirements Guidance

8.2 All activity is captured in

sufficient and necessary detail to

accurately describe the specific

activities that were performed, who

performed them, the time they were

performed, and the critical assets

that were affected.

8.2.a The assessor shall examine evidence and test the

software to confirm that the tracking method(s) implemented

capture specific activity performed, including:

• Enablement of any privileged modes of operation.

• Disabling of encryption of sensitive data.

• Decryption of sensitive data.

• Exporting of sensitive data to other systems or processes.

• Failed authentication attempts.

• Disabling or deleting a security control or altering security

functions.

By recording the details in this requirement for all

attempts to access or use critical assets, malicious

activity or potential software or data compromise can be

quickly identified and with sufficient detail to know who

performed the activity, whether the attempt was

successful, when the activity occurred, what critical

assets were affected, and the origination of the event.

8.2.b The assessor shall examine evidence and test the

software to confirm that the tracking method(s) implemented

provide the following:

• A unique identification for the individual, system, or entity

accessing or using critical assets.

• A timestamp for each tracked event.

• Details on what critical asset has been accessed.

8.2.c The assessor shall test the software to confirm that

confidential data is not directly recorded in the tracking data.

8.3 The software supports secure

retention of detailed activity records.

8.3.a Where the activity records are managed by the software,

including only temporarily before being passed to other

systems, the assessor shall examine evidence and test the

software to confirm that the protection methods are

implemented to protect completeness, accuracy, and integrity

of the activity records.

In order to identify anomalous behavior and to enable

forensic investigation upon suspicion of potential

software or data compromise, the software must

provide for the retention of detailed activity records

either through native means (within the software itself)

or support integration with other solutions such as

centralized log servers, cloud-based logging solutions,

or a back-end monitoring solutions.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 50

Control Objectives Test Requirements Guidance

 8.3.b Where the software utilizes external or third-party

systems for the maintenance of tracking data, such as a log

server, the assessor shall examine evidence to confirm that

guidance on the correct and complete setup and/or integration

of the software with the external or third-party system(s) is

provided to stakeholders in accordance with Control Objective

12.1.

Without adequate protection of activity records, their

completeness, accuracy, and integrity cannot be

guaranteed and any reliance that would otherwise be

placed on them (such as during a forensic investigation)

would be negated.

When activity records are managed by the software, the

records must be protected in accordance with all

applicable requirements for the protection of sensitive

data.
8.3.c The assessor shall test the software to confirm methods

are implemented to secure the authenticity of the tracking data

during transmission to the log storage system, and to confirm

that this protection meets the requirements of this standard (for

example, authenticity parameters must be applied using strong

cryptography) and any account or authentication parameters

used for access to an external logging system are protected.

8.4 The software handles failures in

activity-tracking mechanisms such

that the integrity of existing activity

records is preserved.

8.4.a The assessor shall examine evidence and test the

software to confirm that the failure of the activity-tracking

mechanism(s) does not violate the integrity of existing records

by confirming that:

• The software does not overwrite existing tracking data

upon a restart of the software. Each new start shall only

append to existing datasets or shall create a new tracking

dataset.

• Where unique dataset names are relied upon for

maintaining integrity between execution instances, the

implementation ensures that other software (including

another instance of the same software) cannot overwrite

or render invalid existing datasets.

(continued on next page)

Software security controls should be implemented to

ensure that when activity-tracking mechanism(s) fail,

those failures are handled in a way that maintains the

integrity of the records. Otherwise, attackers may

intentionally target activity-tracking mechanisms and

cause failures that would allow the attackers to conceal

or overwrite evidence of their activities.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 51

Control Objectives Test Requirements Guidance

 8.4.a

• The software applies, where possible, suitable file

privileges to assist with maintaining the integrity of the

tracking dataset (such as applying an append only access

control to a dataset once created). Where the software

does not apply such controls, the assessor shall confirm

reasonable justification exists describing why this is the

case, why the behavior is sufficient, and what additional

mitigations are applied to maintain the integrity of the

tracking data.

8.4.b The assessor shall examine evidence and test the

software to confirm that the integrity of activity tracking records

is maintained by:

• Performing actions that should be tracked, force-closing

and then restarting the software, and performing other

tracked actions.

• Performing actions that should be tracked, power-cycling

the platform on which the software is executing, and then

restarting the software and performing other tracked

actions.

• Locking access to the tracking dataset and confirming that

the software handles the inability to access this dataset in

a secure way, such as by creating a new dataset or

preventing further use of the software.

• Preventing the creation of new dataset entries by

preventing further writing to the media on which the

dataset is located (for example, by using media that has

insufficient available space).

Where any of the tests above are not possible, the assessor

shall interview personnel to confirm reasonable justification

exists to describe why this is the case and shall confirm

protections are in place to prevent such scenarios from

affecting the integrity of the tracking records.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 52

Control Objectives Test Requirements Guidance

Control Objective 9: Attack Detection

Attacks are detected, and the impacts/effects of attacks are minimized.

9.1 The software detects and alerts

upon detection of anomalous

behavior, such as changes in post-

deployment configurations or

obvious attack behavior.

9.1.a The assessor shall examine evidence and test the

software to confirm that methods are implemented to validate

the integrity of software executables and any configuration

options, files, and datasets that the software relies upon for

operation such that unauthorized post-deployment changes are

detected.

Where the execution environment prevents this, the assessor

shall examine evidence (including publicly available literature

on the platform and associated technologies) to confirm that

there are indeed no methods for validating authenticity, and that

additional security controls are implemented to minimize the

associated risk.

Software should possess basic functionality to

differentiate between normal and anomalous user

behavior. Examples of anomalous behavior that should

be automatically detected by the software include

changes in post-deployment (or post-initialization)

configurations or obvious automated-attack behaviors,

such as repeated authentication attempts at a

frequency that is infeasible for a human user.

In some cases, it may be impractical to implement

these capabilities directly into payment software, and

third-party tools or services may be required. Where

such tools or services are relied upon, the software

vendor must provide guidance (or direction on where

appropriate guidance may be obtained) that describes

how and to what extent third-party tools and services

should be configured to satisfy the control objective and

associated test requirements.

9.1.b The assessor shall examine evidence and test the

software to confirm that integrity values used by the software

and dataset(s) upon which it relies for secure operation are

checked upon software execution, and at least every 36 hours

thereafter (if the software continues execution during that time

period).

9.1.c Where cryptographic primitives are used by any anomaly-

detection methods, the assessor shall examine evidence and

test the software to confirm that the cryptographic primitives are

protected.

9.1.d Where stored values are used by any anomaly detection

methods, the assessor shall examine evidence and test the

software to confirm that these values are considered sensitive

data and are protected accordingly.

9.1.e Where configuration or other dataset values can be

modified by the software during execution, the assessor shall

examine evidence and test the software to confirm that integrity

protections are implemented to allow for this update while still

ensuring dataset integrity can be validated after the update.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 53

Control Objectives Test Requirements Guidance

 9.1.f The assessor shall examine evidence and test the

software to confirm that the software implements controls to

prevent brute-force attacks on account, password, or

cryptographic-key input fields (for example, input rate limiting).

9.1.g Where third-party tools or services are relied upon by the

software to provide attack detection capabilities, the assessor

shall examine evidence to confirm that guidance on how to

configure such tools and services to support this control

objective is provided to stakeholders in accordance with Control

Objective 12.1.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 54

Secure Software Lifecycle Management

The software is maintained using secure software lifecycle management practices.

Control Objectives Test Requirements Guidance

Control Objective 10: Threat and Vulnerability Management

Payment software threats and vulnerabilities are identified, assessed, and managed appropriately.

10.1 Software threats and

vulnerabilities are identified,

assessed, and addressed.

10.1.a Using information obtained in Test Requirement 4.1.a,

the assessor shall examine evidence to confirm that common

attack methods against the software are identified. This may

include platform-level, protocol-level, and/or language-level

attacks.

Determining how to effectively secure and defend the

software against attacks requires a thorough

understanding of the specific threats and potential

vulnerabilities applicable to the vendor’s software.

This typically involves understanding the following:

• The types of information collected, stored,

processed, or transmitted by the software.

• The motivations an attacker may have for

attacking the software.

• The methods an attacker might utilize or the

vulnerabilities an attacker might try to exploit

during an attack.

• The exploitability of any identified

vulnerabilities.

• The impact a successful attack.

The identified threats and vulnerabilities should be

tracked, assigned to responsible personnel, and

fixed or mitigated prior to payment software release.

For guidance on threat analysis and cyber-resiliency

design principles, refer to industry standards and

guidance, such as the current version of NIST

Special Publication 800-160.

10.1.b The assessor shall examine evidence to confirm that the

identified attacks are valid for the software and shall note where

this does not include common attack methods detailed in

industry-standard references such as OWASP and CWE lists.

10.1.c The assessor shall examine evidence to confirm that

mitigations against each identified attack are implemented, and

that the software release process includes ongoing validation of

the existence of these mitigations.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 55

Control Objectives Test Requirements Guidance

10.2 Vulnerabilities in the software

and third-party components are

tested for and fixed prior to release.

10.2.a The assessor shall examine evidence to confirm that

robust testing processes are used throughout the software

lifecycle to manage vulnerabilities in software and to verify that

the mitigations used to secure the software against attacks

remain in place and are effective.

Most software vulnerabilities are introduced as a

result of coding errors, bad design, improper

implementation, or the use of vulnerable

components.

Software should be developed and tested in a

manner that minimizes the existence of any

vulnerabilities and detects those that emerge over

time, such that the vulnerabilities may be addressed

before the software is released or updated.

Techniques to avoid the introduction of vulnerabilities

during development include the use of security

coding practices, testing code during each phase of

the development lifecycle using automated tools

such as static/dynamic analysis tools and interactive

security testing tools, and standardizing the use of

known secure components (for example, common

code that has already undergone significant security

vetting).

To minimize the introduction of software

vulnerabilities from third-party components, those

components must also be evaluated. Ideally, they

should be subject to the same secure development

and testing processes as the software created by the

vendor.

Security testing should be performed by

appropriately skilled vendor personnel or third

parties. In addition, security testing personnel should

be able to conduct tests in an objective manner and

be authorized to escalate any identified

vulnerabilities to appropriate management or

development personnel, so they can be properly

addressed.

10.2.b The assessor shall examine evidence including

documented testing processes and output of several instances

of the testing to confirm that the testing process:

• Includes, at a minimum, the use of automated tools

capable of detecting vulnerabilities both in software code

and during software execution.

• Includes the use of security testing tools that are suitable

for the software architecture, development languages, and

frameworks used in the development of the software.

• Accounts for the entire code base and detects

vulnerabilities in third-party, open-source, or shared

components and libraries.

• Accounts for common vulnerabilities and attack methods.

• Demonstrates a history of finding software vulnerabilities

and remediating them prior to software release.

10.2.c Where evidence examined in Test Requirement 10.2.b

shows the release of software with known vulnerabilities, the

assessor shall examine further evidence to confirm that:

• An industry-standard vulnerability-ranking system (such as

CVSS) is used to classify/categorize vulnerabilities.

• A remediation plan is maintained for all detected

vulnerabilities that ensures vulnerabilities do not remain

unmitigated for an indefinite period.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 56

Control Objectives Test Requirements Guidance

Control Objective 11: Secure Software Updates

Software releases and updates to address vulnerabilities are provided in a secure and timely manner.

11.1 Software updates to fix known

vulnerabilities are made available to

stakeholders in a timely manner.

11.1.a The assessor shall examine evidence to confirm that:

• Reasonable criteria are defined for releasing software

updates to fix security vulnerabilities.

• Security updates are made available to stakeholders in

accordance with the defined criteria.

Vulnerabilities in software should be fixed as soon as

possible to enable software users and other

stakeholders to address any risks before

vulnerabilities in their payment systems and software

can be exploited by attackers.

Vulnerabilities should be addressed in a manner that

is commensurate with the risk they pose to software

users or other stakeholders. The most critical or

severe vulnerabilities (those with the highest

exploitability and the greatest potential impact to

stakeholders) should be patched immediately,

followed by those with moderate-to-low exploitability

or potential impact. The criteria for determining how

and when to make patches available to stakeholders

should be defined and followed.

11.1.b The assessor shall examine evidence, including update-

specific security-testing results and details, to confirm that

security updates are made available to stakeholders in

accordance with the defined criteria. Where updates are not

provided in accordance with the defined criteria, the assessor

shall confirm that such instances are justified and reasonable.

11.2 Software releases and updates

are delivered in a secure manner

that ensures the integrity of the

software code.

11.2.a The assessor shall examine evidence to confirm that the

method(s) by which the vendor releases software updates

maintains the integrity of the software code during transmission

and installation.

Security updates should include a mechanism within

the update process to verify the update code has not

been replaced or tampered with. Examples of

integrity checks include, but are not limited to,

checksums and digitally signed certificates (where

implemented correctly). Verification could be

implemented within the software itself or through

guidance that is provided to stakeholders to direct

them on the manual verification of software updates.

In addition, the process of distributing updates and

patches should prevent malicious individuals from

intercepting the updates in transit, modifying them,

and then redistributing them to unsuspecting

stakeholders.

11.2.b Where user input or interaction is required to validate the

integrity of the software code, the assessor shall examine

evidence to confirm that guidance on this process is provided to

stakeholders in accordance with Control Objective 12.1.

11.2.c Where the integrity method implemented is not

cryptographically secure, the assessor shall examine evidence

to confirm that the software distribution method provides a chain

of trust, such as through use of a TLS connection that provides

compliant cipher-suite implementations.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 57

Control Objectives Test Requirements Guidance

 11.2.d The assessor shall examine vendor evidence to confirm

that stakeholders are notified of software updates, and that

guidance on how they may be obtained and installed is provided

to stakeholders in accordance with Control Objective 12.1.

11.2.e The assessor shall examine evidence to confirm that

stakeholders are notified when known vulnerabilities are

detected in software that has not yet been updated with a fix.

This includes vulnerabilities that may exist in third-party software

and libraries used by the software. The assessor shall confirm

that this process includes providing the stakeholders with

suggested mitigations for any such vulnerabilities.

11.2.f The assessor shall examine evidence to confirm that the

software update mechanisms cover all software, configuration

files, and other metadata that may be used by the software for

security purposes or which may in some way affect the security

of the software.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 58

Control Objectives Test Requirements Guidance

Control Objective 12: Software Vendor Implementation Guidance

The software vendor provides stakeholders with clear and thorough guidance on the secure implementation, configuration, and operation of the software.

12.1 The software vendor provides

stakeholders with clear and thorough

guidance on the secure

implementation, configuration, and

operation of its payment software.

12.1.a The assessor shall examine evidence to confirm that the

vendor creates and provides stakeholders, clear and sufficient

guidance to allow for the secure installation, configuration, and

use of the software.

When followed, the software vendor's

implementation guidance provides assurance that

the software and patches can be securely installed,

configured, and maintained in a customer

environment, and that all desired security functions

are active and working as intended. The guidance

should cover all options and functions available to

software users that could affect the security of the

software or the data it interacts with. The guidance

should also include secure configuration options for

any components provided with or supported by the

software, such as external software and underlying

platforms.

Examples of configurable options include:

• Changing default credentials and passwords.

• Enabling and disabling software accounts,

services, and features.

• Changes in resource access permissions.

• Integration with third-party cryptographic

libraries, random number generators, and so

on.

The provided guidance should result in a secure

configuration across all supported platforms and all

configurable options.

12.1.b The assessor shall examine evidence to confirm that the

guidance:

• Includes details on how to securely and correctly install any

third-party software that is required for the operation of the

vendor software.

• Provides instructions on the correct configuration of the

platform(s) on which the software is to be executed,

including setting security parameters and installation of any

data elements (such as certificates).

• Includes instructions for key management (for example, the

use of keys and how they are distributed, loaded, removed,

changed, and destroyed.)

• Does not instruct the user to disable security settings or

parameters within the installed environment, such as anti-

malware software or firewall or other network-level

protection systems.

• Does not instruct the user to execute the software in a

privileged mode higher than what is required by the

software.

• Provides details on how to validate the version of the

software and clearly indicates for which version(s) of the

software the guidance is written.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 59

Control Objectives Test Requirements Guidance

 12.1.b

• Provides justification for any requirements in this standard

that are to be assessed as not applicable. For each of

these, the assessor shall confirm justification exists for why

this is the case and shall confirm that it agrees with their

understanding and the results of their software testing.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 60

Module A – Account Data Protection Requirements

Module Name Overview Control Objectives

Module A – Account Data

Protection Requirements
Security requirements for software that stores,

processes, or transmits account data.

A.1: Sensitive Authentication Data

A.2: Cardholder Data Protection

Purpose and Scope

This section (hereinafter referred to as the “Account Data Protection Module”) defines security requirements and assessment procedures for

software that stores, processes, or transmits Account Data. For the purposes of this module, account data is defined as follows:

Account Data

Cardholder Data includes: Sensitive Authentication Data includes:

▪ Primary Account Number (PAN)

▪ Cardholder Name

▪ Expiration Date

▪ Service Code

▪ Full track data (magnetic-stripe data or

equivalent on a chip)

▪ CAV2/CVC2/CVV2/CID

▪ PINs/PIN blocks

The primary account number (PAN) is the defining factor for cardholder data. If PAN is stored, processed, or transmitted or is otherwise

present, the requirements in this module apply in addition to the Secure Software Core Requirements.

The table on the following page illustrates commonly used elements of cardholder data and sensitive authentication data, whether storage of that

data is permitted or prohibited, and whether this data needs to be protected. This table is not meant to be exhaustive, but it is presented to

illustrate the different types of requirements that apply to each data element.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 61

Data Element

Storage
Permitted

Render Stored Data Unreadable per
Control Objective A.2.3

A
c

c
o

u
n

t
D

a
ta

Cardholder
Data

Primary Account Number (PAN) Yes Yes

Cardholder Name Yes No

Service Code Yes No

Expiration Date Yes No

Sensitive
Authentication

Data2

Full Track Data 3 No Cannot store per Control Objective A.1.1

CAV2/CVC2/CVV2/CID4 No Cannot store per Control Objective A.1.1

PIN/PIN Block5 No Cannot store per Control Objective A.1.1

Control Objectives A.2.2 and A.2.3 apply only to PAN. If PAN is stored with other elements of cardholder data, only the PAN must be rendered

unreadable according to Control Objective A.2.3. Sensitive authentication data must not be stored after authorization, even if encrypted, unless the

software is intended only for use by issuers or organizations that support issuing services. Only in those cases can sensitive authentication data

be stored post-authorization.

2 Sensitive authentication data must not be stored after authorization (even if encrypted).
3 Full track data from the magnetic stripe, equivalent data on the chip, or elsewhere.
4 The three- or four-digit value printed on the front or back of a payment card.
5 Personal identification number entered by cardholder during a card-present transaction, and/or encrypted PIN block present within the transaction message.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 62

Security Requirements

Control Objectives Test Requirements Guidance

Control Objective A.1: Sensitive Authentication Data

Sensitive Authentication Data (SAD) is not retained after authorization.

A.1.1 The software does not store

sensitive authentication data after

authorization (even if

encrypted) unless the software is

intended only for use by issuers or

organizations that support issuing

services.

A.1.1 Using information obtained in Test Requirement 1.1.a

in the Core Requirements section, the assessor shall

examine evidence and test the software to identify all

potential storage locations for Sensitive Authentication Data,

and to confirm that the software does not store such data

after transaction authorization is complete. This includes

storage of SAD in temporary storage (such as volatile

memory), semi-permanent storage (such as RAM disks), and

non-volatile storage (such as magnetic and flash storage

media).

Where Sensitive Authentication Data is stored after

authorization, the assessor shall examine evidence to

confirm that the software is designed explicitly for issuing

purposes or for use by issuers or organizations that support

issuing services.

Sensitive authentication data consists of full track data,

card validation code or value, and PIN data. Storage of

sensitive authentication data after authorization is

prohibited. This data is valuable to malicious

individuals as it allows them to generate counterfeit

payment cards and create fraudulent transactions.

Testing should include at least the following types of

files, as well as any other output generated by the

payment software:

• Incoming transaction data

• All logs (for example, transaction, history,

debugging, error)

• History files

• Trace files

• Audio and image files (for example, digital voice

and biometrics)

• Non-volatile memory, including non-volatile

cache

• Database schemas

• Database contents

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 63

Control Objectives Test Requirements Guidance

Control Objective A.2: Cardholder Data Protection

Stored cardholder data is protected.

A.2.1 The software vendor provides

guidance to stakeholders regarding

secure deletion of cardholder data after

expiration of defined retention

period(s).

A.2.1 The assessor shall examine evidence to confirm that

guidance is provided to stakeholders in accordance with

Control Objective 12.1 that details:

• All locations where the software stores cardholder data.

• How to securely delete cardholder data stored by the

payment software, including cardholder data stored on

underlying software or systems (such as in OS files or

in databases).

• How to configure the underlying software or systems to

prevent the inadvertent capture or retention of

cardholder data (for example, by system backup or

restore points).

The software vendor must provide details of all

locations where the software may store cardholder

data, including in any underlying software or systems

(such as OS, databases, and so on), as well as

instructions for securely deleting the data from these

locations once the data has exceeded any defined

retention period(s).

Stakeholders must also be provided with configuration

details for the underlying systems that the software

runs on to ensure these underlying systems are not

capturing cardholder data without the stakeholder’s

knowledge.

Stakeholders need to know how underlying systems

could be capturing data from the software so they can

either prevent it from being captured or ensure the

data is properly protected.

A.2.2 The software provides features

to restrict or otherwise mask all

displays of PAN to the minimum

number of digits required.

A.2.2.a The assessor shall examine evidence to confirm that

the software provides features that enable responsible

parties to restrict or otherwise mask the display of PAN to the

minimum number of digits required to meet a defined

business need.

The display of full PAN on items such as computer

screens, payment card receipts, logs, faxes, or paper

reports can result in this data being obtained by

unauthorized individuals and used fraudulently.

The masking approach should always ensure that only

the minimum number of digits is displayed as

necessary to perform a specific business function. For

example, if only the last four digits are needed to

perform a business function, the software should

provide features to mask the PAN so that individuals

performing that function can view only the last four

digits.

A.2.2.b The assessor shall examine evidence to confirm that

all displays of PAN are completely masked by default, and

that explicit authorization is required to display any digits of

the PAN.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 64

Control Objectives Test Requirements Guidance

 A.2.2.c Where user input or interaction is required to

configure PAN masking features and options, the assessor

shall examine evidence to confirm that guidance on how to

configure these features/options is provided to stakeholders

in accordance with Control Objective 12.1.

A.2.2.d The assessor shall test the software to confirm that

all displays of PAN are completely masked by default, and

that explicit authorization is required to display any element

of the PAN.

A.2.3 PAN is rendered unreadable

anywhere it is stored (including data on
portable digital media, backup media,
and in logs) by using any of the
following approaches:

• Truncation (hashing cannot be

used to replace the truncated

segment of PAN).

• Index tokens and pads (pads

must be securely stored).

• Strong cryptography with

associated key-management

processes and procedures.

A.2.3.a The assessor shall examine evidence and test the

software to confirm that methods are implemented to render

PAN unreadable anywhere it is stored using the following

methods:

• Truncation.

• Index tokens and pads, with the pads being securely

stored.

• Strong cryptography, with associated key-management

processes and procedures.

Note: The assessor should examine several tables, files, log

files, and any other resources created or generated by the

software to verify the PAN is rendered unreadable.

Lack of protection of PANs can allow malicious

individuals to view or download this data. The intent of

truncation is that only a portion (not to exceed the first

six and last four digits) of the PAN is stored.

The intent of strong cryptography is that the encryption

be based on an industry-tested and accepted

algorithm (not a proprietary or "home-grown"

algorithm) with strong cryptographic keys.

A.2.3.b Where user input or interaction is required to

configure methods to render PAN unreadable when stored,

the assessor shall examine evidence to confirm that

guidance on configuring these options is provided to

stakeholders in accordance with Control Objective 12.1 and

that the guidance includes the following:

• Details of any configurable options for each method

used to render cardholder data unreadable, and

instructions on how to configure each method for all

locations where cardholder data is stored.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 65

Control Objectives Test Requirements Guidance

 A.2.3.b

• A list of all instances where cardholder data may be

output for storage outside of the payment application,

and instructions that the implementing entity is

responsible for rendering the PAN unreadable in all

such instances.

• Instruction that if debugging logs are ever enabled (for

troubleshooting purposes) and they contain PAN, they

must be protected, that debugging must be disabled as

soon as troubleshooting is complete, and that

debugging logs must be securely deleted when no

longer needed.

A.2.3.c Where software creates both tokenized and

truncated versions of the same PAN, the assessor shall

examine evidence and test the software to confirm that the

tokenized and truncated versions cannot be correlated to

reconstruct the original PAN.

A.2.3.d Where software creates or generates files for use

outside the software (for example, files generated for export

or backup) including for storage on removable media, the

assessor shall examine evidence and test the software to

confirm that PAN is rendered unreadable.

A.2.3.e If the software vendor stores PAN for any reason (for

example, because log files, debugging files, and other data

sources are received from customers for debugging or

troubleshooting purposes), the assessor shall examine

evidence and test the software to confirm that PAN is

rendered unreadable in accordance with this control

objective.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 66

Module B – Terminal Software Requirements

Module Name Overview Control Objectives

Module B: Terminal

Software Requirements

Security requirements for software intended for

deployment and execution on PCI-approved POI

devices.

B.1: Terminal Software Documentation

B.2: Terminal Software Design

B.3: Terminal Software Attack Mitigation

B.4: Terminal Software Security Testing

B.5: Terminal Software Implementation Guidance

Purpose and Scope

This section (hereinafter referred to as the “Terminal Software Module” or “this module”) defines security requirements and assessment

procedures for payment software and applications that rely on the security features of PCI-approved POI devices to protect payment data.

Software applications that are developed explicitly for deployment and execution on PCI-approved POI devices that do not meet the definition of

Firmware as defined in the PCI PIN Transaction Security (PTS) Point-of-Interaction (POI) Modular Security Requirements (hereinafter referred to

as the “PCI PTS POI Standard”) are in scope for the requirements in this module.

Background

PCI-approved POI devices provide a high degree of confidentiality and integrity protection for payment data and payment transactions through the

implementation of strict physical and logical protection mechanisms. Software that is deployed and executed on PCI-approved POI devices must

not degrade or adversely affect the protection mechanisms provided by the device. In addition, the software must not provide features or functions

that could allow those protection mechanisms to be circumvented or rendered ineffective.

The requirements and assessment procedures defined in the Terminal Software Module have been developed to help ensure that terminal

software protects payment data and does not introduce features, functions, or weaknesses that could enable an attacker to circumvent or render

ineffective the protection mechanisms provided by the underlying PCI-approved POI devices upon which the software is intended to be deployed.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 67

Considerations

Some assessment procedures in this module require examination of documentation describing the security features and functions of the

underlying payment terminal. The terminal software vendor should work with their assessor(s), as well as the respective payment terminal vendors

for each of the devices to be included as part of the terminal software evaluation, to identify and compile all device documentation needed for the

terminal software evaluation. For more information about Secure Software assessment preparation and activities, refer to the Secure Software

Program Guide.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 68

Security Requirements

Control Objectives Test Requirements Guidance

Control Objective B.1: Terminal Software Documentation

The software architecture is documented and includes diagrams that describe all software components and services in use and how they interact.

B.1.1 The software vendor maintains

documentation that describes all

software components, interfaces,

and services provided or used by the

software.

B.1.1 The assessor shall examine evidence to confirm that

documentation is maintained that describes the software’s

overall design and function including, but not limited to, the

following:

• All third-party and open-source components, external

services, and Application Programming Interfaces (APIs)

used by the software.

• All User Interfaces (UI) and APIs provided or made

accessible by the software.

Software vendors should also maintain detailed

documentation that clearly and effectively describes

the overall design and function of its software,

including all services (internal and external),

components, and functions used and provided by the

software, and how those services, components, and

functions interact.

B.1.2 The software vendor maintains

documentation that describes all

data flows and functions that involve

sensitive data.

Note: This control objective is an

extension of Control Objectives 1.1

and 1.2. Validation of these control

objectives should be performed at

the same time.

B.1.2.a The assessor shall examine evidence to confirm that

documentation is maintained that describes all sensitive data

flows including, but not limited to, the following:

• All sensitive data stored, processed, or transmitted by the

software.

• All locations where sensitive data is stored, including both

temporary and persistent storage locations.

• How sensitive data is securely deleted from storage (both

temporary and persistent) when no longer needed.

In addition to identifying the components, interfaces,

and services exposed by the software, the software

vendor should also maintain documentation that

clearly identifies and describes the types of data

stored, processed, and transmitted by the software;

whether and how that data is shared between

components and functions; and the protection

mechanisms implemented or relied upon by the

software to protect that data. This type of

documentation clarifies how data is stored,

processed, or transmitted by the software, with

whom the data is shared, and how the software may

be attacked to gain access to the software’s critical

assets.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 69

Control Objectives Test Requirements Guidance

 B.1.2.b The assessor shall examine evidence to confirm that

documentation is maintained that describes all functions that

handle sensitive data including, but not limited to, the following:

• All inputs, outputs, and possible error conditions for each

function that handles sensitive data.

• All cryptographic algorithms, modes of operation, and

associated key management practices for all functions that

employ cryptography for the protection of sensitive data.

B.1.3 The software vendor maintains

documentation that describes all

configurable options that can affect

the security of sensitive data.

B.1.3 The assessor shall examine evidence to confirm that

documentation is maintained that describes all configurable

options provided or made available by the software that can

impact the security of sensitive data including, but not limited to,

the following:

• All configurable options that could allow access to

sensitive data.

• All configurable options that could enable modification of

any mechanisms used to protect sensitive data.

• All remote access features, functions, and parameters

provided or made available by the software.

• All remote update features, functions, and parameters

provided or made available by the software.

• The default settings for each configurable option.

Software vendors should identify all configurable

options available within their software, particularly

those that control security features and functions.

Configurable features must be considered as

potential avenues for attacking the software. Where

configurable options enable control over security

features and functions, robust security controls

should be implemented to protect the configurable

security features from being misused. Additionally,

all configurable options should be configured to their

most secure settings by default in accordance with

Control Objective 2.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 70

Control Objectives Test Requirements Guidance

Control Objective B.2: Terminal Software Design

The software does not implement any feature that enables the security features, functions, and characteristics of the payment terminal to be circumvented or

rendered ineffective.

B.2.1 The software is intended for

deployment and operation on

payment terminals (PCI-approved

POI devices).

B.2.1 The assessor shall examine evidence to determine the

payment terminals upon which the software is to be deployed.

For each of the payment terminals identified and included in the

software assessment, the assessor shall examine the payment

terminal’s device characteristics and compare them with the

following characteristics specified in the PCI SSC’s List of

Approved PTS Devices to confirm they match:

• Model name/number

• PTS approval number

• Hardware version number

• Firmware version number(s)

Payment terminals provide a high degree of

confidentiality and integrity protection for payment

data and payment transactions through the

implementation of strict physical and logical

protection mechanisms. Software that is deployed

and executed on these payment terminals should

use the approved features and functions provided by

the payment terminal rather than implementing its

own equivalent features or functions, to avoid

exposing vulnerabilities or other weaknesses that

could allow an attacker to circumvent or render

ineffective the security features of the payment

terminal.

B.2.2 The software uses only the

external communication methods

included in the payment terminal’s

PTS device evaluation.

Note: The payment terminal may

provide an IP stack approved per the

PTS Open Protocols module, or the

device may provide serial ports or

modems approved by the PTS

evaluation to communicate

transaction data encrypted by its PCI

PTS SRED functions. Using any

external communication methods not

included in the PCI-approved POI

device evaluation invalidates the

PTS approval, and such use is

prohibited for terminal software.

B.2.2.a The assessor shall examine evidence (including source

code) to determine whether the software supports external

communications.

To ensure software does not degrade or defeat the

security mechanisms provided by the underlying

payment terminal, the software must use the device-

provided security features and functions in

accordance with the payment terminal vendor’s

security guidance/policy. This is particularly true for

external communication methods. Under no

circumstances should the software provide its own

communication methods (for example, VMs, IP

stack, scripting languages, and so on) to control

device-level interfaces. The introduction of any such

function by the software could introduce new

vulnerabilities or weaknesses that would allow

malicious entities to circumvent the security

protections provided by the payment terminal and

degrade the overall security characteristics of both

the software and the underlying device.

B.2.2.b Where the software supports external communications,

the assessor shall examine all relevant payment terminal

documentation (including the payment terminal vendor’s security

guidance/policy) to determine which external communication

methods were included in the payment terminal’s PTS device

evaluation.

B.2.2.c The assessor shall examine evidence (including source

code) to confirm that the software uses only the external

communication methods included in the payment terminal’s PTS

device evaluation and does not implement its own external

communication methods or IP stack.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 71

Control Objectives Test Requirements Guidance

B.2.2.1 Where the software relies

on the Open Protocols feature of

the payment terminal, the software

is developed in accordance with

the payment terminal vendor’s

security guidance/policy.

B.2.2.1 The assessor shall examine all relevant payment

terminal documentation (including the payment terminal

vendor’s security guidance/policy) and all relevant software

vendor process documentation and software design

documentation to confirm that the software is developed in

accordance with the payment terminal vendor’s security

guidance/policy.

Payment terminal vendor security guidance/policy is

intended for application developers, system

integrators, and end-users of the platform to meet

the PCI PTS POI Open Protocol (as well as other

PTS) requirements as part of a PCI-approved POI

device evaluation.

B.2.2.2 The software does not

circumvent, bypass, or add

additional services or protocols to

the Open Protocols of the payment

terminal as approved and

documented in the payment

terminal vendor’s security

guidance/policy. This includes the

use of:

• Link Layer protocols

• IP protocols

• Security protocols

• IP Services

B.2.2.2 The assessor shall examine evidence (including

source code) to confirm that the software does not circumvent,

bypass, or add additional services or protocols to the Open

Protocols of the payment terminal as approved and

documented in the payment terminal vendor’s security

guidance/policy. This includes the use of:

• Link Layer protocols

• IP protocols

• Security protocols

• IP Services

The Open Protocol requirements in the PCI PTS POI

Standard ensure that open protocols and services in

payment terminals do not have vulnerabilities that

can be remotely exploited and yield access to

sensitive data or sensitive resources in the payment

terminal. The payment terminal vendor defines what

protocols and services are supported by the payment

terminal and provides guidance to their use.

Adding or enabling additional services or protocols or

failing to follow the issued payment terminal vendor’s

security guidance/policy invalidates the approval

status of that device for that implementation.

B.2.3 The software does not bypass

or render ineffective any encryption

methods or account data security

methods implemented by the

payment terminal in accordance with

the payment terminal vendor’s

security guidance/policy.

B.2.3.a The assessor shall examine evidence (including source

code) to determine whether the software provides encryption of

sensitive data. Where the software does provide such a

function, the assessor shall confirm the software does not

bypass or render ineffective any encryption methods or account

data security methods implemented by the payment terminal as

follows:

Payment terminals are designed to provide robust

cryptographic and key management functions. For

example, PCI PTS POI-approved devices are

verified to meet stringent requirements for loading,

managing, and protecting cryptographic keys.

Software that provides its own data encryption

methods must not include methods that would

enable an attacker to bypass or render ineffective

the encryption methods implemented by the payment

terminal and required by the payment terminal

vendor’s security guidance/policy.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 72

Control Objectives Test Requirements Guidance

 B.2.3.b The assessor shall examine all relevant payment

terminal documentation (including payment terminal vendor

security guidance/policy)to determine which encryption methods

are provided by the payment terminal.

 B.2.3.c The assessor shall examine evidence (including source

code) to confirm that the software does not bypass or render

ineffective any encryption methods provided by the payment

terminal in accordance with the payment terminal vendor’s

security guidance/policy.

 B.2.3.d Where the software provides encryption of sensitive

data, but the payment terminal is not required to provide

approved encryption methods (per the PCI PTS POI Standard),

the assessor shall examine evidence (including source code) to

confirm that the encryption methods used or implemented by the

software for encrypting sensitive data provide “strong

cryptography” and are implemented in accordance with Control

Objectives 7.1 and 7.2.

B.2.4 The software uses only the

random number generation

function(s) included in the payment

terminal’s PTS device evaluation for

all cryptographic operations involving

sensitive data or sensitive functions

where random values are required

and does not implement its own

random number generation

function(s).

B.2.4.a The assessor shall examine evidence (including source

code) to determine whether the software requires random

values to be generated for any cryptographic operations

involving sensitive data or sensitive functions.

The unpredictability of random numbers is of critical

importance to ensure the effectiveness of

cryptographic operations. It is not a trivial endeavor

to design and implement a secure random number

generator. For this reason, the terminal software

should only use the random number generation

function(s) implemented by the payment terminal for

all cryptographic operations involving sensitive data

or sensitive functions where random values are

required.

B.2.4.b Where the software requires random values for

cryptographic operations involving sensitive data or sensitive

functions, the assessor shall examine all relevant payment

terminal documentation (including payment terminal vendor

security guidance/policy) to determine all of the random number

generation functions included in the payment terminal’s PTS

device evaluation.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 73

Control Objectives Test Requirements Guidance

 B.2.4.c The assessor shall examine evidence (including source

code) to confirm that the software uses only the random number

generation function(s) included in the payment terminal’s PTS

device evaluation for all cryptographic functions involving

sensitive data or sensitive functions where random values are

required and does not implement its own random number

generation function(s).

B.2.5 The software does not provide,

through its own logical interface(s),

the sharing of clear-text account data

directly with other software.

Note: The software is allowed to

share clear-text account data directly

with the payment terminal’s

firmware.

B.2.5.a The assessor shall examine evidence (including source

code) to determine all logical interfaces of the software,

including:

• All logical interfaces and the purpose and function of each.

• The logical interfaces intended for sharing clear-text

account data, such as those used to pass clear-text

account data back to the approved firmware of the

payment terminal.

• The logical interfaces not intended for sharing of clear-text

account data, such as those for communication with other

software.

Many payment terminals provide mechanisms for the

secure reading and exchange of data (SRED).

These mechanisms are rigorously tested as part of

the payment terminal’s PTS device evaluation to

confirm that the confidentially and integrity of clear-

text account data is maintained during information

exchange with the payment terminal’s firmware.

Software that provides its own mechanisms for

sharing clear-text account data directly with other

software is more likely to be prone to attacks and the

unintended or unauthorized disclosure of clear-text

account data than software that uses the payment

terminal-provided SRED (or similar) functions.

 B.2.5.b The assessor shall examine evidence (including source

code) to confirm that the software does not allow sharing of

clear-text account data directly with other software through its

own logical interfaces.

 B.2.5.c The assessor shall install and configure the software in

accordance with the guidance required in Control Objectives

12.1 and B.5.1. Using an appropriate “test platform” and suitable

forensic tools and/or methods, the assessor shall test the

software using all software functions that handle account data to

confirm that the software does not allow the sharing of clear-text

account data directly with other software through its own logical

interfaces.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 74

Control Objectives Test Requirements Guidance

B.2.6 The software uses and/or

integrates all shared resources

securely and in accordance with the

payment terminal vendor’s security

guidance/policy.

B.2.6.a The assessor shall examine evidence (including source

code) to determine whether and how the software connects to

and/or uses any shared resources provided by the payment

terminal, and to confirm that:

• The guidance required in Control Objectives 12.1 and

B.5.1 includes detailed instructions for how to configure the

software to ensure secure integration with shared

resources.

• The required guidance for secure integration with shared

resources is in accordance with the payment terminal

vendor’s security guidance/policy.

Where the software uses or integrates shared

resources provided by the payment terminal, the

software must use or integrate resources in

accordance with the payment terminal vendor’s

guidance/policy. Failure to use such shared

resources in accordance with payment terminal

guidance puts any sensitive data shared with such

resources at greater risk of unauthorized disclosure.

 B.2.6.b The assessor shall install and configure the software in

accordance with the guidance required in Control Objectives

12.1 and B.5.1. Using an appropriate “test platform” and suitable

forensic tools and/or methods, the assessor shall test the

software using all software functions that use or integrate

shared resources to confirm that any connections to or use of

shared resources are handled securely.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 75

Control Objectives Test Requirements Guidance

B.2.7 The software does not bypass

or render ineffective any application

segregation enforced by the

payment terminal.

B.2.7.a The assessor shall examine all relevant payment

terminal documentation (including the payment terminal

vendor’s security guidance/policy) to determine whether and

how application segregation is enforced by the payment

terminal.

Many payment terminals enforce logical separation

between software applications. In the context of this

module, software applications are logical entities that

do not meet the PTS definition of “firmware”.

Logical application segmentation controls are

intended to prevent one application on the payment

terminal from interfering or tampering with other

applications. However, these logical segregation

controls are not intended to prevent applications

from sharing data. They are mainly intended to

prevent applications from modifying the structure or

function of other applications or the payment

terminal’s firmware.

To preserve the integrity of payment terminal

application-segregation controls, all terminal

software should adhere to those segregation controls

and not include or introduce any function(s) that

would allow the software to be used (intentionally or

unintentionally) to bypass or defeat device-level

application segregation.

B.2.7.b The assessor shall examine evidence (including source

code) to confirm that the software does not introduce any

function(s) that would allow it to bypass or defeat any device-

level application segregation controls.

B.2.8 All software files are

cryptographically signed to enable

cryptographic authentication of the

software files by the payment

terminal firmware.

B.2.8.a The assessor shall examine the guidance required in

Control Objectives 12.1 and B.5.1 to confirm that it includes

detailed instructions for how to cryptographically sign the

software files in a manner that enables the cryptographic

authentication of all such files by the payment terminal.

To support cryptographic authentication of software

files by the payment terminal, software vendors must

cryptographically “sign” all of the software files

(including all binaries, libraries, and configuration

files) using digital certificates where the payment

terminal vendor is included in the certificate chain.

Additionally, the cryptographic signing process

should incorporate the use of a secure cryptographic

device (SCD), typically provided by the payment

terminal vendor. Cryptographic signing should also

be performed under dual control to protect the

integrity of all cryptographic keys, software files, and

the cryptographic signing process in general.

 B.2.8.b The assessor shall install and configure the software in

accordance with the guidance required in Control Objectives

12.1 and B.5.1. Using an appropriate “test platform” and suitable

forensic tools and/or methods, the assessor shall confirm that all

software files are cryptographically signed in a manner that

enables the cryptographic authentication of all software files.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 76

Control Objectives Test Requirements Guidance

 B.2.8.c Where the software supports the loading of files outside

of the base software package(s), the assessor shall examine

evidence and test the software to determine whether each of

those files is cryptographically signed in a manner that enables

the cryptographic authentication of those files by the payment

terminal. For any files that cannot be cryptographically signed,

the assessor shall justify why the inability to cryptographically

sign each such files does not adversely affect the security of the

software or the underlying payment terminal.

 B.2.8.d The assessor shall examine evidence (including source

code) to determine whether and how the software supports

EMV® payment transactions. Where EMV payment transactions

are supported by the software, the assessor shall install and

configure the software in accordance with the guidance required

in Control Objectives 12.1 and B.5.1. Using an appropriate “test

platform” and suitable forensic tools and/or methods, the

assessor shall confirm that all EMV Certification Authority Public

Keys are cryptographically signed in a manner that enables the

cryptographic authentication of those files by the payment

terminal.

Where terminal software supports EMV payment

transactions, the EMV Certificate Authority public

keys should also be signed and cryptographically

authenticated using the same methods and

procedures as the terminal software files.

B.2.9 The integrity of software

prompt files is protected in

accordance with Control Objective

B.2.8.

B.2.9.a The assessor shall examine evidence (including source

code) to determine whether the software supports the use of

data entry prompts and/or prompt files. Where the software

supports such features, the assessor shall confirm the software

protects the integrity of those prompts as defined in Test

Requirements B.2.9.b through B.2.9.c.

Sensitive data (including PIN and other account

data) captured and handled by the software and

underlying payment terminal is often controlled using

prompt files.

Prompt files are configuration files that control

software display prompts. To preserve the integrity of

the prompts, prompt files should be stored and

managed securely. Anywhere clear-text data entry is

allowed by the software, prompt controls should be

implemented.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 77

Control Objectives Test Requirements Guidance

 B.2.9.b The assessor shall examine the guidance required in

Control Objectives 12.1 and B.5.1 to confirm that it includes

detailed instructions for stakeholders to cryptographically sign all

prompt files in a manner that enables the cryptographic

authentication of all such files in accordance with B.2.8.

Many prompt files are stored within a secure

boundary of the device, such as a Secure Chip or

Secure Element or within a Trusted Execution

Environment. When prompt files are to be

maintained in shared storage locations, the files

should be cryptographically signed and

authenticated by the payment terminal prior to

installation or execution.

 B.2.9.c The assessor shall install and configure the software in

accordance with the guidance required in Control Objectives

12.1 and B.5.1. Using an appropriate “test platform” and suitable

forensic tools and/or methods, the assessor shall confirm that all

prompt files are cryptographically signed in a manner that

enables the cryptographic authentication of those files by the

payment terminal in accordance with B.2.8.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 78

Control Objectives Test Requirements Guidance

Control Objective B.3: Terminal Software Attack Mitigation

Software security controls are implemented to mitigate software attacks.

B.3.1 The software validates all user

and other external inputs.

Note: Control Objectives B.3.1

through B.3.3 are extensions of

Control Objective 4.2. Validation of

these control objectives should be

performed at the same time.

B.3.1.a The assessor shall examine evidence (including source

code) to identify all locations where the software accepts input

data from untrusted sources. For each instance, the assessor

shall confirm that input data is required to conform to a list of

expected characteristics and that all input that does not conform

to the list of expected characteristics is rejected by the software

or otherwise handled securely.

Any terminal software functions that accept

externally supplied data (directly or indirectly) is a

potential attack vector, particularly where the data is

processed by an interpreter.

Injection attacks are common for almost all types of

software and are intended to manipulate input data

in a way that causes software to behave

unexpectedly or unintentionally. For example,

software that accepts externally supplied information,

such as a file name or file path to construct a search

command, can be easily manipulated to disclose

information about sensitive files and resources that

were never intended to be accessed through the

software interface. To protect against this and other

types of injection attacks, all input data should be

validated, filtered, and/or sanitized before the

information is sent to any interpreter.

Inputs for terminal software tend to involve simple

commands and data. Therefore, all terminal software

input data should be validated against a defined and

restricted set of acceptable values before passing

the data to any command interpreter. Any data that

is not explicitly identified as an acceptable value or

an acceptable range of values should be rejected.

 B.3.1.b The assessor shall install and configure the software in

accordance with the guidance required in Control Objectives

12.1 and B.5.1. Using an appropriate “test platform” and suitable

forensic tools and/or methods, the assessor shall test the

software by attempting to supply each user or other external

input with invalid or unexpected characteristics to confirm that

the software validates all inputs and either rejects or securely

handles all unexpected characteristics.

B.3.1.1 All string values are

validated by the software.

B.3.1.1.a The assessor shall examine evidence (including

source code) to identify all terminal software functions where

string values are passed as inputs, and to confirm that all strings

are checked for text or data that can be erroneously or

maliciously interpreted as a command.

Externally supplied inputs that can be interpreted as

commands are particularly susceptible to injection

attacks. Even if externally supplied inputs are

processed or transformed in some way (for example,

augmented with additional data or sanitized), they

may still be susceptible.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 79

Control Objectives Test Requirements Guidance

 B.3.1.1.b The assessor shall install and configure the software

in accordance with the guidance required in Control Objectives

12.1 and B.5.1. Using an appropriate “test platform” and suitable

forensic tools and/or methods, the assessor shall test the

software by attempting to supply each of the identified functions

with data that includes commands to confirm that the software

either rejects such inputs or otherwise handles such inputs

securely.

Therefore, all inputs that can be interpreted as

commands must be handled securely so that the

execution of any constructed commands is

controlled, as opposed to blindly executing whatever

commands are included in the string.

B.3.1.2 The software checks inputs

and rejects or otherwise securely

handles any inputs that violate buffer

size or other memory allocation

thresholds.

B.3.1.2.a The assessor shall examine evidence (including

source code) to identify all software functions that handle buffers

and process data supplied from untrusted sources. For each of

the noted functions, the assessor shall confirm that each of the

identified functions:

• Uses only unsigned variables to define buffer sizes.

• Conducts checks to confirm that buffers are sized

appropriately for the data they are intended to handle,

including consideration for underflows and overflows.

• Rejects or otherwise securely handles any inputs that

violate buffer size or other memory allocation thresholds.

Payment terminals and terminal software often

leverage low-level programming languages, such as

C and C++. These languages allow the software to

directly manipulate OS-level or hardware-level

features and functions. Using low-level programming

languages offers many benefits but also has several

drawbacks. Low-level programming languages are

susceptible to attacks that use low-level

characteristics to manipulate the software or the

underlying hardware. Buffer overflows and

underflows are examples of these types of attacks.

To protect against buffer overflow attacks, all

terminal software functions that define or control

buffer sizes should compare the amount of data

intended for those buffers with the buffer size. Data

that violates buffer size thresholds (overflows and

underflows) should be rejected or otherwise handled

securely.

 B.3.1.2.b The assessor shall install and configure the software

in accordance with the guidance required in Control Objectives

12.1 and B.5.1. Using an appropriate “test platform” and suitable

forensic tools and/or methods, the assessor shall test the

software by attempting to supply each noted function with inputs

that violate buffer size thresholds to confirm that the software

either rejects or securely handles all such attempts.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 80

Control Objectives Test Requirements Guidance

B.3.2 Return values are checked,

and error conditions are handled

securely.

B.3.2.a Using information obtained in Test Requirement 1.2.a,

the assessor shall examine evidence (including source code) to

identify all software functions that handle sensitive data. For

each of the noted software functions, the assessor shall confirm

that each function:

• Checks return values for the presence of sensitive data.

• Processes the return values in a way that does not

inadvertently “leak” sensitive data.

Another common technique used by attackers to

compromise sensitive data that is stored, processed,

or transmitted by software is to manipulate the

software in a way that generates unhandled

exceptions.

Unhandled exceptions are error conditions that the

software vendor has not anticipated and, therefore,

has not factored into the software design. If an

attacker can manipulate a software function that is

known to handle sensitive data in a way that

generates a condition that the software does not

handle properly, it is possible that the software may

output an error that includes sensitive data.

To protect against attacks involving unhandled

exceptions, all terminal software functions handling

sensitive data should include processes or routines

that instruct the software how to treat unknown

exceptions. These processes should determine what

information to include in any error codes or values.

The disclosure of sensitive data through error

conditions or error reporting, whether intentional or

accidental, should be avoided.

 B.3.2.b The assessor shall install and configure the software in

accordance with the guidance required in Control Objectives

12.1 and B.5.1. Using an appropriate “test platform” and suitable

forensic tools and/or methods, the assessor shall test each

software function that handles sensitive data by attempting to

manipulate the software in a manner that generates an

unhandled exception to confirm that error conditions do not

expose sensitive data.

B.3.3 Race conditions are avoided. B.3.3.a The assessor shall examine evidence (including source

code) to identify all software functions that rely on synchronous

processing. For each of the noted functions, the assessor shall

confirm that protection mechanisms have been implemented in

the software to mitigate race conditions.

Race conditions can arise when the software

requires sequential processing of data to perform

some software function. For example, a “time-of-use,

time-of-check race condition” exists when a file is

checked at one point and used immediately after,

with the assumption that the previous check is still

valid. This assumption may not be correct if the

system allows the file to be modified in between.

If an attacker can identify and manipulate the

software to take advantage of a race condition, they

may be able to execute arbitrary code or generate

other conditions that the attacker could exploit

further.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 81

Control Objectives Test Requirements Guidance

 B.3.3.b The assessor shall install and configure the software in

accordance with the guidance required in Control Objectives

12.1 and B.5.1. Using an appropriate “test platform” and suitable

forensic tools and/or methods, the assessor shall test each

software function that relies on synchronous processing by

attempting to generate a race condition (such as through

specially crafted attacks intended to exploit the timing of

synchronous events) to confirm that the software is resistant to

such attacks.

To protect against race conditions, protection

mechanisms should be implemented by the terminal

software to control sequential processing more

tightly. Using the example described above, a

“locking” mechanism could be used to prevent

updates to the file until the file can be processed

completely.

Regardless of the methods used, any terminal

software that requires sequential processing of data

for its operation should implement protections to

avoid race conditions.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 82

Control Objectives Test Requirements Guidance

Control Objective B.4: Terminal Software Security Testing

The software is tested rigorously for vulnerabilities prior to each release.

B.4.1 A documented process is

maintained and followed for testing

software for vulnerabilities prior to

each update or release.

Note: This control objective is an

extension of Control Objective 10.2.

Validation of these control objectives

should be performed at the same

time.

B.4.1.a The assessor shall examine evidence to confirm that the

software vendor maintains a documented process in

accordance with Control Objective 10.2 for testing the software

for vulnerabilities prior to each update or release, and that the

documented process includes detailed descriptions of how the

vendor tests for the following:

• The presence or use of any unnecessary ports and

protocols.

• The unintended storage, transmission, or output of any

clear-text account data.

• The presence of any default user accounts with default or

static access credentials.

• The presence of any hard-coded authentication credentials

in code or in configuration files.

• The presence of any test data or test accounts.

• The presence of any faulty or ineffective software security

controls.

Many software vulnerabilities are the result of the

software vendor’s failure to remove test functions or

data. These lingering functions and data can provide

an attacker with a path to compromise the software.

Before software is released to the public, it must be

tested to confirm that test functions and data are not

included in the release version. Examples of such

functions and data that must be explicitly removed

prior to release include:

• Any communication ports or protocols that are

not absolutely required for software operation.

• Any functions that allow the unintended

storage, transmission, or output of any clear-

text account data.

• Any hard-coded authentication credentials in

code or configuration files.

• Any test data or test user accounts.

• Any faulty or ineffective software security

controls and protection mechanisms.

 B.4.1.b The assessor shall examine evidence to confirm that the

software is tested for vulnerabilities prior to each release and

that the testing covers the following:

• The presence or use of any unnecessary ports and

protocols.

• The unintended storage, transmission, or output of any

clear-text account data.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 83

Control Objectives Test Requirements Guidance

 B.4.1.b

• The unintended storage, transmission, or output of any

clear-text account data.

• The presence of any default user accounts with static

access credentials.

• The presence of any hard-coded authentication credentials

in code or in configuration files.

• The presence of any test data or test accounts.

• The presence of any faulty or ineffective software security

controls.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 84

Control Objectives Test Requirements Guidance

Control Objective B.5: Terminal Software Implementation Guidance

The software vendor provides stakeholders with clear and thorough guidance on the secure implementation, configuration, and operation of the software on

applicable payment terminals.

B.5.1 The software vendor provides

implementation guidance on how to

implement and operate the software

securely for the payment terminals

on which it is to be deployed.

Note: This control objective is an

extension of Control Objective 12.1.

Validation of these control objectives

should be performed at the same

time.

B.5.1 The assessor shall examine evidence to confirm that

guidance on how to securely implement and operate the

software for all applicable payment terminals is provided to

stakeholders in accordance with Control Objective 12.1.

Because many security features used by terminal

software are provided by the underlying payment

terminal, the terminal software vendor should include

instructions in its implementation guidance on how to

configure all the available security features of both

the terminal software and underlying payment

terminal where applicable.

B.5.1.1 Implementation guidance

includes detailed instructions for how

to configure all available security

options and parameters of the

software.

B.5.1.1 The assessor shall examine evidence to confirm that the

required guidance includes detailed instructions on how to

configure all available security options and parameters of the

software in accordance with Control Objective B.1.3.

B.5.1.2 Implementation guidance

includes detailed instructions for how

to securely configure the software to

use the security features and

functions of the payment terminal

where applicable.

B.5.1.2 The assessor shall examine evidence to confirm that the

required guidance includes detailed instructions on how to

securely configure the software to use the security features and

functions of the payment terminal where applicable.

B.5.1.3 Implementation guidance

includes detailed instructions for how

to configure the software to securely

integrate or use any shared

resources provided by the payment

terminal.

B.5.1.3 The assessor shall examine evidence to confirm that the

required guidance includes detailed instructions on how to

configure the software to securely integrate or use any shared

resources provided by the payment terminal in accordance with

Control Objective B.2.6.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 85

Control Objectives Test Requirements Guidance

B.5.1.4 Implementation guidance

includes detailed instructions on how

to cryptographically sign the

software files in a manner that

enables the cryptographic

authentication of all such files by the

payment terminal.

B.5.1.4 The assessor shall examine evidence to confirm that the

required guidance includes detailed instructions on how to

cryptographically sign the software files in a manner that

enables the cryptographic authentication of all such files by the

payment terminal in accordance with Control Objective B.2.8.

B.5.1.5 Implementation guidance

includes instructions for

stakeholders to cryptographically

sign all prompt files.

B.5.1.5 The assessor shall examine evidence to confirm that the

required guidance includes detailed instructions for stakeholders

to cryptographically sign all prompt files in accordance with

Control Objective B.2.9.

B.5.2 Implementation guidance

adheres to payment terminal vendor

guidance on the secure

configuration of the payment

terminal.

B.5.2 The assessor shall examine evidence (including the

payment terminal vendor’s security guidance/policy and the

guidance required in Control Objective B.5.1) to confirm that the

guidance aligns with the payment terminal vendor’s security

guidance/policy.

Software implementation guidance must exclude

instructions that conflict with the guidance and

recommendations of the payment terminal vendor.

Software implementation guidance must align with

the payment terminal vendor’s security

guidance/policy. Otherwise, software users who rely

on the software vendor for instructions may

unknowingly configure the software and/or the

underlying payment terminal improperly.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 86

Module C – Web Software Requirements

Module Name Overview Control Objectives

Module C: Web Software

Requirements

Additional security requirements for payment software

that uses Internet technologies, protocols, and

languages to initiate or support electronic payment

transactions.

C.1: Web Software Components & Services

C.2: Web Software Access Controls

C.3: Web Software Attack Mitigation

C.4: Web Software Communications

Purpose and Scope

This section (hereinafter referred to as the “Web Software Module” or “this module”) defines security requirements and assessment procedures for

payment software and applications that use Internet technologies, protocols, and languages for the purposes of initiating or supporting electronic

payment transactions. This includes both traditional (monolithic) and cloud-native payment applications, APIs, web services, microservices,

serverless functions, gRPC, and any other methods used to make payment functions accessible or to conduct electronic payment transactions

over the Internet. Any software-based features or functions that handle requests from Internet “clients” and generate responses to initiate or

support an electronic payment transaction are in scope for the requirements in this module.

Considerations

Web software architectures can be extremely complex and involve features and functions that are provided by different entities and may be

distributed across different geographic locations. The security issues affecting web software can vary significantly. The security requirements

defined within this web module do not address all risks affecting web-based payment software. They are intended as a minimum set of security

characteristics, controls, features, and capabilities that web-based payment software must possess to defend itself from the most common attacks

on web software.

While many of the control objectives defined in this standard protect against new and/or novel attacks beyond the most common techniques,

attacks will inevitably evolve or emerge that will require new methods or approaches to mitigate them. It is ultimately the responsibility of payment

software vendors, providers, developers, and suppliers to keep abreast of evolving attacks techniques and to implement appropriate security

controls to enable their software to defend against such attacks.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 87

Security Requirements

Control Objectives Test Requirements Guidance

Control Objective C.1: Web Software Components & Services

All components and services used by the software are identified and maintained in a manner that minimizes the exposure of vulnerabilities.

C.1.1 All software components and

services are documented or

otherwise cataloged in a software bill

of materials (SBOM).

C.1.1 The assessor shall examine evidence to confirm that

information is maintained that describes all software

components and services comprising the software solution,

including:

• All proprietary software libraries, packages, modules,

and/or code packaged in a manner that enables them to

be tracked as a freestanding unit of software.

• All third-party and open-source frameworks, libraries, and

code embedded in or used by the software during

operation.

• All third-party software dependencies, APIs, and services

called by the software during operation.

Modern software is rarely created entirely in-house

and is typically composed of various bespoke code

segments integrated with numerous components

such as commercial and/or open-source frameworks,

libraries, APIs, and services. Any part of this code

may have or develop vulnerabilities over time that

will require patching or mitigation.

Knowing all of the components that comprise a

software application or service, where they come

from, and how they are updated and maintained is

critical to minimizing and managing vulnerabilities in

software applications. Without this information, it

would be extremely difficult to identify and track

vulnerabilities in software components that could

expose the embedding software application to

attacks.

A Software Bill of Materials or “SBOM” serves this

purpose by documenting information about the

software components and versions used to create a

software product, their suppliers, and any third-party

code that may also be embedded in these

components. NIST refers to this information as

“provenance data” and there are numerous

standards and frameworks available, such as

CycloneDX, SPDX and SWID, that describe how this

information should be structured. For more

information, refer to those standards and

frameworks.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 88

Control Objectives Test Requirements Guidance

C.1.2 The SBOM describes each of

the primary components and

services in use, as well as their

secondary transitive component

relationships and dependencies to

the greatest extent feasible.

C.1.2.a The assessor shall examine evidence to confirm that the

SBOM describes all primary (top-level) components and

services in use and all of their secondary transitive relationships

and dependencies.

Software components and services may have many

nested relationships and dependencies with other

software components and services that are owned or

maintained by multiple different entities. Identifying

all of these different relationships can be challenging

where there are many different third-party

components nested in the software code.

Fortunately, many software development frameworks

and compilers provide the capabilities to identify and

map nested and transient dependencies. For the

purposes of this standard, the SBOM is expected to

identify, at a minimum, the code obtained from third

parties as well as their secondary transitive

component relationships and dependencies (i.e.,

code embedded in third-party code).

If circumstances exist that complicate or prevent the

identification of secondary transitive component

relationships and dependencies, then such

circumstances should be documented and

reasonable justification should be maintained to

explain why these dependencies are not accurately

reflected in the SBOM. Examples of such

circumstances may include third-party APIs, where

transparency into nested third-party components

called by or embedded into those APIs is not

provided by the API provider.

C.1.2.b The assessor shall test the software to confirm that the

information provided in the SBOM accurately reflects the

software components and services in use during software

operation, including both primary components and services as

well as their secondary transitive component relationships and

dependencies. Where such dependencies and relationships are

not identified and described in the SBOM, the assessor shall

confirm that the absence of such information is justified and

reasonable.

C.1.3 Where the software is

provided “as a service,” the SBOM

includes information describing the

software dependencies present in

the production software execution

environment to the greatest extent

feasible.

C.1.3.a The assessor shall examine evidence to confirm that the

SBOM describes all dependencies present in the production

software execution environment that the software relies upon for

operation or to satisfy security requirements in this standard.

Software that is provided “as a service” often

involves the use of components and services

resident in the production environment that are

unique to that environment. To ensure that these

dependencies and relationships are identified and

tracked and vulnerabilities in these components and

services identified and mitigated, these components

and services must be also included in the SBOM.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 89

Control Objectives Test Requirements Guidance

 C.1.3.b The assessor shall examine evidence and test the

software (to the extent possible) to confirm that the information

provided in the SBOM accurately reflects the software

dependencies present in the production software execution

environment. Where such dependencies are not identified and

described in the SBOM, the assessor shall confirm that the

absence of such information is justified and reasonable.

Examples of these types of components include, but

are not limited to, database servers, web servers,

application servers, runtime platform(s),

authentication servers/services, "plugins", and any

other components or services present in the

production environment.

C.1.4 The SBOM includes sufficient

information about each component

or service to enable tracking each

component or service across the

software supply chain.

C.1.4.a The assessor shall examine evidence to confirm that

information is maintained in the SBOM that describes the

following for each component and service in use, including

secondary component relationships and dependencies:

• The original source/supplier of the component or service.

• The name of the component or service as defined by the

original supplier.

• A description of the relationship(s) between the component

and service and other components/services embedded in

or used by the software.

• The version of the component or service as defined by the

original supplier to differentiate it from previous or other

versions.

• The name of the author who designed/developed the

component or service.

• Any other identifiers provided by the original supplier to

uniquely identify the component or service.

The primary purpose of an SBOM is to enable the

tracking of software components across the software

supply chain and to map them to repositories

containing vulnerability information about these

components. To facilitate tracking components for

these purposes, information must be included in the

SBOM that enables software stakeholders to:

• Uniquely identify each of the components and

services used by the software.

• Uniquely identify different versions of the same

software components and services that may be

used by the software, and to differentiate them

from other versions of the same software

components and services made available by

the supplier(s).

• Locate the sources of these components and

services such that updated versions may be

downloaded, installed, and/or referenced where

applicable.

Without this basic information, tracking vulnerabilities

and available patches in these components and

services may be extremely difficult, if not impossible.

C.1.4.b The assessor shall examine evidence and test the

software to confirm that the information provided in the SBOM is

an accurate representation of the software components and

services present in and/or in use by the software.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 90

Control Objectives Test Requirements Guidance

C.1.5 A new SBOM is created or

generated each time the software is

updated.

C.1.5 The assessor shall examine evidence to confirm that a

new SBOM is created or otherwise generated for each new

release of the software.

To enable tracking of vulnerabilities across different

versions of a payment software, it is imperative that

each version of the software has a SBOM generated

that accurately reflects the components and services

in use by that version.

Since many different versions of a payment software

may be available (or active) at any given time and

may include multiple versions of numerous third-

party components and services, each version of the

payment software must be tracked independently of

other versions.

Failure to identify and describe the components and

services unique to a given version of payment

software could enable vulnerabilities to be

introduced without the software provider’s

knowledge if they are unaware that a vulnerable

version of a software component or service is in use.

C.1.6 Vulnerabilities in third-party

components and services are

monitored and managed in

accordance with Control Objective

10.

C.1.6.a The assessor shall examine evidence to confirm that

third-party components and services present in and/or in use by

the software are regularly monitored for vulnerabilities in

accordance with Control Objective 10.1.

Vulnerabilities in third-party components and

services must be handled in the same manner as

vulnerabilities in vendor-controlled code. They must

be monitored for vulnerabilities through testing

and/or the monitoring of publicly available

vulnerability disclosure repositories and managed

such that any known vulnerabilities in those

components and services are patched, or otherwise

mitigated, as quickly as possible.

Failure to patch or mitigate a vulnerability in third-

party components or services can have the same

ramifications as a failure to patch or mitigate a

vulnerability in the payment software vendor’s own

code.

C.1.6.b The assessor shall examine evidence to confirm that

vulnerabilities in third-party components and services are

identified and are patched or otherwise mitigated in a timely

manner in accordance with Control Objective 10.2.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 91

Control Objectives Test Requirements Guidance

C.1.7 Where software components

and/or resources are hosted or

maintained on third-party systems,

such as content delivery networks

(CDN), the authenticity of those

components and resources is

verified each time they are fetched.

C.1.7.a Where software components and resources are fetched

from external and/or third-party repositories, the assessor shall

examine evidence to confirm that the authenticity of the software

component is verified each time the component is fetched.

It is a common architectural design technique in

modern web applications to download or “fetch”

third-party components and resources (for example,

files, scripts, stylesheets, packages, and libraries)

that are housed on publicly available code

repositories (such as public content delivery

networks) at the time they are needed rather than

embedding and maintaining those components and

resources in local code repositories. This technique

provides many benefits including the ability to

automatically deploy updates to third-party

components and resources without necessarily

having to recompile code.

Unfortunately, there are some significant drawbacks

to this approach. Third-party code repositories are

heavily targeted by attackers because it enables

them to potentially compromise numerous

applications and entities by compromising a single

package, library, script, or function. For example, if a

malicious individual were able to compromise these

repositories or otherwise replace a widely used

JavaScript library with a modified version, then that

malicious library could be automatically propagated

to every user of that library without their knowledge.

To mitigate the risk of fetching malicious versions of

code from third-party repositories, payment software

vendors must validate the authenticity of such

components before they are fetched (and/or loaded)

by the calling application.

There are numerous ways in which this can be

accomplished, but the most common method of

verifying a component’s authenticity is through

strong cryptography and digital signatures.

C.1.7.b The assessor shall test the software to confirm that the

authenticity of all software components and resources fetched

from third-party systems or repositories is verified each time

they are fetched by the software.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 92

Control Objectives Test Requirements Guidance

Control Objective C.2: Web Software Access Controls

Software security controls are implemented to restrict access to Internet-accessible interfaces, functions, and resources to explicitly authorized users only.

C.2.1 User access to sensitive

functions and sensitive resources

exposed through Internet accessible

interfaces is authenticated.

C.2.1 Using information obtained in Test Requirements 1.2.a

and 2.1.a in the Core Requirements, the assessor shall examine

evidence to identify all sensitive functions and sensitive

resources exposed through Internet accessible interfaces.

Writing custom authentication functions is not a trivial

matter. There are numerous issues and

considerations that must be factored into the design

and implementation of such functions including, but

not limited to, the fact that they are a significant

target for attackers. Authentication functions must be

free from weaknesses in design and must be

resistant to targeted attacks.

Given the importance of and the heavy reliance on

such functions for security purposes (and those of

this standard), it is recommended that entities use

third-party authentication functions, modules,

libraries, services, and so on, that are already widely

used within the industry and have been subjected to

thorough security testing and scrutiny.

Where the use of such mechanisms is not feasible,

then custom methods may be used. However,

custom methods must be designed and implemented

in strict accordance with applicable industry

standards or best practices for authentication.

Failure to do so could expose vulnerabilities or

design weaknesses in custom authentication

methods to malicious entities who may exploit those

vulnerabilities to manipulate or otherwise bypass

custom authentication mechanisms.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 93

Control Objectives Test Requirements Guidance

C.2.1.1 The methods implemented

to authenticate user access to

sensitive functions and sensitive

resources use industry standard

mechanisms.

C.2.1.1.a The assessor shall examine evidence to identify all

methods implemented by the software to authenticate access to

sensitive functions and sensitive resources.

Similar to developing one’s own authorization

mechanisms, developing custom authentication

mechanisms can be quite a complex undertaking.

Much of an application’s security is dependent on

the strength and robustness of its authentication and

authorization mechanisms. There are numerous

issues and considerations that must be factored into

the design and implementation of such functions

including but not limited to, the fact that they are a

significant target for attackers. Authentication

functions must be free from weaknesses and must

be able to withstand targeted attacks.

For this reason, only well-designed and well-tested

mechanisms should be used. Authentication

mechanisms that are provided by industry-accepted

suppliers and widely adopted within the industry are

generally understood to have been subjected to

substantial testing and validation throughout the

course of that adoption. Therefore, it is strongly

recommended that these mechanisms be used by

other entities instead of writing and implementing

their own mechanisms.

Where the use of third-party mechanisms is not

feasible, then custom methods may be used.

However, custom methods must be designed and

implemented in strict accordance with applicable

industry standards or best practices for

authentication. Failure to do so could expose

vulnerabilities or design weaknesses in custom

authentication methods to malicious entities who

may exploit those vulnerabilities to manipulate, or

otherwise bypass the custom authentication

mechanisms, rendering all such functions effectively

useless.

C.2.1.1.b The assessor shall examine evidence to confirm that

the implemented methods use industry-standard mechanisms

that are:

• Provided by well-known and industry-accepted third-party

suppliers; or

• Designed and implemented in accordance with applicable

industry standards or best practices.

C.2.1.1.c Where sessions are used to authenticate user access

to sensitive functions and sensitive resources, the assessor

shall examine evidence to confirm that the sessions are handled

in accordance with industry recognized standards and best

practices for secure session management.

C.2.1.1.d Where tokens (for example, access tokens and

refresh tokens) are used to authenticate user access to

sensitive functions and sensitive resources, the assessor shall

examine evidence to confirm that the tokens are handled in

accordance with industry recognized standards and best

practices for secure token management.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 94

Control Objectives Test Requirements Guidance

C.2.1.2 The methods implemented

to authenticate user access to

sensitive functions and sensitive

resources through Internet

accessible interfaces are sufficiently

strong and robust to protect

authentication credentials in

accordance with Control Objective

5.3.

C.2.1.2 Using information obtained in Test Requirement

C.2.1.1.a, the assessor shall examine evidence to confirm that

the authentication methods implemented are sufficiently strong

and robust to protect authentication credentials in accordance

with Control Objective 5.3 in the Core Requirements section.

Strong and robust authentication methods are those

that are resistant to common attacks. Examples of

such methods include, but are not limited to, multi-

factor authentication and/or authentication methods

that employ strong cryptography (such as digital

signatures or certificates).

C.2.1.3 Authentication decisions are

enforced within a secure area of the

software.

C.2.1.3.a The assessor shall examine evidence to identify

where within the software architecture authentication decisions

are enforced.

Like authorization decisions, authentication

decisions must be enforced within a secure area of

the software. Authentication methods should never

rely solely on scripts or data obtained from the client

or browser. With that said, it is permissible to use

client-side scripts and data when combined with

server-side methods to enhance authentication

capabilities.

C.2.1.3.b The assessor shall examine evidence to confirm that

all authentication decisions are enforced within a secure area of

the software architecture.

C.2.1.3.c The assessor shall examine evidence and test the

software to confirm that client-side or browser-based functions,

scripts, and data are never solely relied upon for authentication

purposes.

C.2.2 Access to all Internet-

accessible interfaces is restricted to

explicitly authorized users only.

C.2.2.a Using information obtained in Test Requirement 2.1.a in

the Core Requirements section, the assessor shall examine

evidence to identify all software interfaces that are exposed to

the Internet or that can be configured in a way that exposes

them to the Internet.

Modern web applications, particularly those that rely

heavily on APIs, microservices and serverless

environments, require fine-grained access control

capabilities to handle the increasingly complex

relationships between software users, interfaces,

functions, and resources.

(continued on next page)
C.2.2.b The assessor shall examine evidence to identify all

methods used to authorize access to Internet accessible

interfaces.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 95

Control Objectives Test Requirements Guidance

C.2.2.c The assessor shall examine evidence and test the

software to confirm that each of these methods:

• Is implemented correctly;

• Is appropriate for the types of users expected to use the

interface; and

• Does not expose known vulnerabilities.

One key difference between traditional “monolithic”

web applications and modern web applications is the

degree to which an application is exposed (or

potentially exposed) to the Internet. Where

monolithic web applications tend to keep interactions

between software components confined to a single

security context (such as an internal or isolated

system or network), modern web applications are

typically segmented into many distinct and/or

independent software functions that are then

exposed to the Internet through APIs so that they

may be accessible to other application or users,

regardless of where they may reside.

Unfortunately, each Internet accessible interface

(and the functions and resources it provides) is a

potential attack vector. To mitigate the risks

associated with exposing so many software

functions to the Internet, each interface must

implement access control mechanisms to ensure

that only authorized systems and users are able to

access the interface, and the functions and

resources exposed through those interfaces.

C.2.2.d Where the methods used to authorize access to Internet

accessible interfaces is user configurable, or otherwise requires

user input or interaction, the assessor shall examine evidence to

confirm that appropriate guidance is made available to

stakeholders in accordance with Control Objective 12.1 that

describes the configurable options available and how to

configure each method securely.

C.2.2.e Where the methods used to authorize access to Internet

accessible interfaces are configured and controlled by the

assessed entity, the assessor shall examine evidence to confirm

that access to Internet accessible interfaces is restricted to an

appropriate set of explicitly authorized users (or entities).

C.2.2.f The assessor shall examine evidence and test the

software to confirm that access to all Internet accessible

interfaces is restricted to explicitly authorized users only.

C.2.3 Access to all software

functions and resources exposed

through Internet accessible

interfaces is restricted to explicitly

authorized users only.

C.2.3 Using information obtained in Test Requirement C.2.2.a,

the assessor shall examine evidence to identify all software

functions and resources that are exposed, or that can be

configured in a way that exposes them, through Internet

accessible interfaces.

In addition to controlling access at the interface-

level, access to individual functions and resources

provided through each Internet accessible interface

must also be controlled.

Access needs to the different functions and

resources within a given interface can be quite

complex depending upon the types of users and

systems that need to use a given interface and the

different capabilities and data accessible through

those functions and resources.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 96

Control Objectives Test Requirements Guidance

C.2.3.1 The software ensures the

enforcement of access control rules

at both the function level and

resource level with fine-grained

access control capabilities.

C.2.3.1.a Using information obtained in Test Requirement C.2.3,

the assessor shall examine evidence to determine how the

software controls access to individual functions and resources

exposed (or potentially exposed) through Internet accessible

interfaces.

To support the fine-grained access control needs of

modern web application architectures and to ensure

that users are only able to access the software

functions and resources that they are authorized to

use, the software must support the ability to define

and enforce access control rules at varying “levels”

within the interface’s hierarchy, including at the

individual function and resource level(s).

Depending upon the types of functions and

resources exposed in a given software interface, the

methods used to authorize access at the interface-

level may not be appropriate to provide access to

individual functions and resources exposed through

such interfaces.

For example, API keys are often used to authorize

access to an API for a particular entity (also called

project-level or entity-level authorization). While API

keys may be suitable for authorizing this level of

access to an API, it may not be suitable for

authorizing individual user access to specific

functions or resources exposed (or potentially

exposed) through the API.

(continued on next page)

C.2.3.1.b The assessor shall then examine evidence to identify

the methods used to restrict access to the functions and

resources exposed (or potentially exposed) through Internet

accessible interfaces and to confirm that each of these methods:

• Is implemented correctly.

• Is appropriate for the type of function(s) and resource(s)

provided.

• Does not expose known vulnerabilities.

C.2.3.1.c Where the methods used to authorize access to the

functions and resources exposed (or potentially exposed)

through Internet accessible interfaces is user configurable or

otherwise requires user input or interaction, the assessor shall

examine evidence to confirm that guidance is made available to

stakeholders in accordance with Control Objective 12.1 that

describes the mechanisms and configurable options available to

restrict access to the functions and resources exposed through

these interfaces, and how to configure such mechanisms.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 97

Control Objectives Test Requirements Guidance

 C.2.3.1.d Where the methods used to authorize access to the

functions and resources exposed (or potentially exposed)

through Internet accessible interfaces is configured and

controlled by the assessed entity, the assessor shall examine

evidence to confirm that access to the functions and resources

is restricted to an appropriate set of explicitly authorized users.

Where fined-grained access control is necessary,

the methods implemented to control access to all

software functions and resources exposed through

Internet accessible interfaces must be appropriate

for the types of authorization(s) required (for

example, user versus entity) and the functions and

resources involved (sensitive versus non-sensitive

functions and resources).

Wherever end users are required to configure the

access control authorizations and permissions for

individual functions and resources exposed through

Internet accessible interfaces, the software vendor

must provide guidance (or otherwise make guidance

accessible) to users and other stakeholders to

explain how to configure such permissions and to

alert them to important security considerations when

configuring available options and parameters.

C.2.3.1.e The assessor shall examine evidence and test the

software to confirm that the methods used to restrict access to

the functions and resources exposed (or potentially exposed)

through Internet accessible interfaces require users to be

explicitly authorized prior to being granted such access.

C.2.3.2 Authorization rules are

enforced upon each user request to

access software functions and

resources through Internet

accessible interfaces.

C.2.3.2.a Using information obtained in Test Requirement

C.2.3.1.a, the assessor shall examine evidence to confirm that

authorization checks are performed each time users request

access to a function or resource exposed (or potentially

exposed) through Internet accessible interfaces to verify they

are authorized for the function, resource, and type of access

requested.

Most modern web applications, particularly those

that use APIs, microservices and serverless

architectures, operate on a request/response basis.

Each time a user wants to perform a function or

access application data, they submit a request to the

application (usually through an API or similar) to

access a particular function or resource. The

software then processes that request and, if

authorized, executes the requested function and/or

returns the requested data.

It is often trivial for attackers to obtain login

credentials of authorized users. A defense-in-depth

strategy is essential to ensuring that only authorized

users can access protected functions and resources.

When combined with other security controls, such as

expiring sessions or tokens after a relatively short

period of time, authorization checks can significantly

limit what an attacker can do if they are able to

compromise the credentials of an authorized user.

C.2.3.2.b The assessor shall examine evidence and test the

software to confirm that access control rules are enforced each

time a user attempts to access a function or resource exposed

(or potentially exposed) through Internet accessible interfaces.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 98

Control Objectives Test Requirements Guidance

C.2.3.3 Access control decisions are

enforced within a secure area of the

software architecture.

C.2.3.3.a The assessor shall examine evidence to identify

where in the software architecture authorization and access

control decisions are enforced.

Payment software should never rely on unknown or

insecure services and features for security-related

purposes. Secure areas or systems are those within

the software architecture where the integrity of

available services and data is ensured, and therefore

can be relied upon by the software.

Historically, web application architectures consisted

of “client-side” components and “server-side”

components. Client-side functions are those typically

performed by a common web browser. Server-side

functions are those typically performed by web,

application, and/or database servers. Given the open

nature and design of most common web browsers

and the fact that they are maintained by end users,

server-side functions are typically considered to be

more secure given a software/service provider’s

ability to control and secure those aspects of the

software architecture.

Modern web software architectures, however, have

become increasingly complex with software

components often deployed across multiple

geographic locations and managed by multiple

entities. In these circumstances, the distinction

between “client-side” or “server-side” functions can

be increasingly ambiguous. The term “secure area”

is a reference to traditional “server-side” functions

without getting into architectural specifics. Examples

of a secure area include a secured server

environment, a microservice, or a serverless API.

C.2.3.3.b The assessor shall examine evidence to confirm that

all access control decisions are enforced within a secure area of

the software architecture.

C.2.3.3.c The assessor shall examine evidence and test the

software to confirm that client-side or browser-based functions,

scripts, and data are never solely relied upon for access control

purposes.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 99

Control Objectives Test Requirements Guidance

Control Objective C.3: Web Software Attack Mitigation

Software security controls are implemented to mitigate common attacks on web applications.

C.3.1 The software enforces or

otherwise supports the use of the

latest HTTP Security Headers to

protect Internet accessible interfaces

from attacks.

C.3.1.a The assessor shall examine evidence to confirm the

software supports the use of the latest HTTP Security Headers,

and to determine the options available and how such settings

are configured.

HTTP Security Headers are a set of security-related

configuration options available on most common

web servers. Examples include the X-Frame-Options

header, the HTTP-Strict-Transport-Security header,

and the Content-Security-Policy header.

The use of these options can protect against a

variety of different types of attacks including cross-

site scripting, clickjacking, and cross-site request

forgery attacks.

While support for specific HTTP Security Headers

may differ depending on the underlying platform or

software technology, these options are widely

available and should be enabled and configured to

the most secure configuration feasible for a given

implementation.

C.3.1.b Where HTTP Security Headers are configured and

controlled by the software provider, the assessor shall examine

evidence to confirm that the software is configured to use the

latest available HTTP Security Headers and that the

configuration settings are reasonable and justified.

C.3.1.c Where user input or interaction is required to configure

HTTP Security Headers, the assessor shall examine evidence

to confirm that guidance is made available to stakeholders in

accordance with Control Objective 12.1 that describes the HTTP

Security Headers supported by the software and how to

configure such settings.

C.3.2 Input data from untrusted

sources is never trusted and

software security controls are

implemented to mitigate the

exploitation of vulnerabilities through

the manipulation of input data.

C.3.2.a Using information obtained in Test Requirement C.2.1.a,

the assessor shall examine evidence to identify all interfaces

that accept data input from untrusted sources.

Many vulnerabilities in software and systems are

exposed when input data supplied by an untrusted

source is inherently trusted by the software and is

processed without first ensuring the data is safe.

Untrusted sources are those that reside in a different

security context than the API or system receiving

and processing the input data. Examples of an

untrusted source could include a system, API, or

microservice residing in a different environment, an

internal system that resides on the same network but

is maintained under a lower security classification, or

a user’s browser.

(continued on next page)

C.3.2.b Where the software accepts input from untrusted

sources, the assessor shall examine evidence to identify the

data format(s) expected by the software for each input field and

the parsers and interpreters involved in processing the input

data.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 100

Control Objectives Test Requirements Guidance

 C.3.2.c Using information obtained in Test Requirement 4.1.a in

the Core Requirements section, the assessor shall examine

evidence to determine whether attacks that target all such

parsers and interpreters are acknowledged in the threat model.

Two of the most common types of attacks, Injection

(SQL, XML, Code, String, and so on) and Cross-Site

Scripting (XSS), exploit the software’s trust in input

data provided by untrusted sources to execute

malicious code or to force the software to behave in

unintended ways.

To protect against these and other types of related

attacks, input data must never be trusted and

software security controls must be implemented to

ensure input data is validated, rendered safe, or

otherwise handled in a manner that mitigates the

likelihood and/or impacts of executing malicious

input data.

C.3.2.d Where such attacks are acknowledged and using

information obtained in Test Requirement 4.2.a in the Core

Requirements section, the assessor shall examine evidence to

confirm that software security controls are defined and

implemented to mitigate attacks that attempt to exploit

vulnerabilities through the manipulation of input data.

C.3.2.e Where the implementation of software security controls

is configurable or otherwise requires user input or interaction,

the assessor shall examine evidence to confirm that guidance is

made available to stakeholders in accordance with Control

Objective 12.1 that describes how to properly configure such

security controls.

C.3.2.1 Industry-standard methods

are used to protect software inputs

from attacks that attempt to exploit

vulnerabilities through the

manipulation of input data.

C.3.2.1.a Using information obtained in Test Requirement 4.2.a

in the Core Requirements section, the assessor shall examine

evidence to identify all software security controls implemented to

mitigate attacks that attempt to exploit vulnerabilities through the

manipulation of input data.

There are a variety of methods and techniques that

may be used to protect software inputs from injection

and other similar types of attacks. The method most

often associated with such protections is “input

validation.” Input validation, however, is difficult to

implement correctly, particularly where complex input

data, such as URLs, XML, JSON, serialized objects,

and so on, are involved. Therefore, input validation is

not appropriate as a primary defense against input

manipulation attacks.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 101

Control Objectives Test Requirements Guidance

 C.3.2.1.b The assessor shall examine evidence to confirm that

the methods implemented to protect against such attacks use

industry-standard mechanisms and/or techniques that are:

• Provided by well-known and industry-accepted third-party

suppliers; or

• Designed and implemented in accordance with applicable

industry standards or best practices.

Other methods, such as parameterization and output

escaping, are better suited as primary defense

mechanisms. While the type and complexity of the

input data and how the data is expected to be used

often dictate the methods that are most appropriate

for a given input, parameterization should be used

where possible. Output escaping can be used as an

alternative if parameterization is not feasible. The

use of input validation may be used as a secondary

defense, where appropriate, to provide defense-in-

depth.

As is the case with other critical functions such as

authentication and authorization, input protection

methods should leverage industry-accepted third-

party mechanisms where possible. If the use of such

mechanisms is not feasible, then custom methods

may be used if they are designed and implemented

in accordance with applicable industry standards or

best practices.

C.3.2.1.c The assessor shall examine evidence and test the

software to confirm that the implemented methods:

• Are implemented correctly in accordance with available

guidance, and

• Do not expose any vulnerabilities.

C.3.2.2 Parsers and interpreters are

configured with the most restrictive

configuration feasible.

C.3.2.2.a Using information obtained in Test Requirement

C.3.2.b, the assessor shall examine evidence to identify the

configurations for each parser or interpreter used to process

untrusted input data.

In some cases, it may not be feasible to isolate

(parameterization) or modify (escaping, encoding,

etc.) input data prior to processing the data. In such

cases, the only viable method to protect against

input manipulation attacks is to use a parser or

interpreter that has been hardened to prevent such

attacks.

For example, at the time of this publication the only

viable way to protect against an XML External Entity

attack is to configure the XML parser to disable the

Document Type Definition (DTD) feature, otherwise

known as External Entities feature.

(continued on next page)

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 102

Control Objectives Test Requirements Guidance

 C.3.2.2.b For each of the parsers/interpreters and the

configurations identified, the assessor shall examine evidence to

confirm that parsers and interpreters are configured with the

most restrictive set of capabilities feasible and that the settings

are justified and reasonable.

Where certain parser/interpreter features cannot be configured

securely, the assessor shall examine evidence to confirm that

other methods are implemented to mitigate the lack of secure

settings and to further protect against the execution of malicious

commands.

The specific settings that must be disabled/enabled

to protect against certain attacks depends on the

parsers and interpreters. For more information, refer

to available security guidance on the specific

parsers/interpreters in use.

Where certain features of the parsers or interpreters

cannot be configured with the most secure settings

possible, then the processing of untrusted input data

should use techniques such as sandboxing to

prevent (or otherwise mitigate the impacts of)

malicious code execution.

C.3.3 Software security controls are

implemented to protect software

interfaces from resource starvation

attacks.

C.3.3.a Using information obtained in Test Requirements

C.2.1.a and C.2.2, the assessor shall examine evidence to

identify all Internet accessible interfaces and the functions and

resources exposed (or potentially exposed) through those

interfaces to identify where such interfaces, functions, and

resources may be susceptible to resource starvation attacks.

While the goal of many attacks is to expose sensitive

data and sensitive functions (directly or indirectly) to

unauthorized users, other attacks are intended to

prevent an application’s use of or access to

important computing resources.

Such attacks aim to overwhelm the software/system

with requests or fill all available system resources

such as processing time or memory, therefore

starving the software/system of the resources it

requires for normal operation and rendering it

unusable to other users.

In other cases, these attacks are intended to force

the software to behave in unintended ways which

could, in turn, enable an attacker to execute arbitrary

code on the targeted system or expose sensitive

data through error messages.

(continued on next page)

C.3.3.b Where such interfaces, functions, and resources are

potentially susceptible to resource starvation attacks, the

assessor shall examine evidence to confirm that:

• The threat of such attacks is documented in accordance

with Control Objective 4.1, and

• Software security controls to mitigate such attacks are

documented and implemented in accordance with Control

Objective 4.2.

C.3.3.c The assessor shall examine evidence to confirm that the

software security controls implemented to mitigate resource

starvation and other similar attacks on Internet accessible

interfaces are designed and implemented in accordance with

applicable industry standards and best practices.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 103

Control Objectives Test Requirements Guidance

 C.3.3.d Where the implementation of software security controls

is user configurable or otherwise requires user input or

interaction, the assessor shall examine evidence to confirm that

guidance is made available to stakeholders in accordance with

Control Objective 12.1 that describes how to configure such

mechanisms.

Examples of methods used to mitigate the risk of

such attacks include limiting the rate on the number

of requests that can be submitted within a given time

period (rate limiting). Additional methods to prevent

such attacks may include defining other limits such

as the number of users and/or systems that can

submit requests, mutually authenticating those users

and systems, or using CAPTCHA or other anti-

automation techniques that can prevent large

volumes of requests being submitted to software

interfaces within a short time period.

For SaaS or other similar environments, appropriate

network-based controls may also be used to address

these types of attacks.

C.3.4 Software security controls are

implemented to protect Internet

accessible interfaces from malicious

file content.

C.3.4.a Using information obtained in Test Requirement C.2.1.a,

the assessor shall examine evidence to identify all Internet

accessible interfaces that accept file uploads and the file types

permitted.

File uploads can be used to provide larger datasets

to a piece of software. However, such uploads must

be managed securely to prevent the misuse of this

function. Files not correctly managed may end up

being executable on the host system or be used as a

vector to infect or subvert the software or other

systems (for example, by creating or overwriting

malicious configuration files). File upload interfaces

may also provide unintended access to the

underlying host system or software.

Different file types may be provided with different

permissions or functions within a host system, and

any file upload system should ensure that only

expected file types are accepted for upload.

However, care must be taken to ensure that this

added process does not itself expose vulnerabilities

that could be exploited.

(continued on next page)

C.3.4.b Where the software accepts file uploads over Internet

accessible interfaces, the assessor shall examine evidence to

confirm that:

• The threat of attacks on file upload mechanisms is

documented in accordance with Control Objective 4.1, and

• Software security controls to mitigate such attacks are

documented and implemented in accordance with Control

Objective 4.2.

C.3.4.c The assessor shall examine evidence to confirm that the

software security controls implemented to mitigate attacks on

file upload mechanisms are implemented in accordance with

applicable industry standards and best practices.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 104

Control Objectives Test Requirements Guidance

 C.3.4.d The assessor shall examine evidence to confirm that the

software security controls implemented to mitigate attacks on

file upload mechanisms include methods to restrict the file types

permitted by the file upload mechanisms.

Many file formats allow for the embedding of other

files or data which can be ‘expanded’ out when

parsing the source file. In some scenarios this can

be used to gain privileges or exploit vulnerabilities on

the host platform which would not otherwise be

possible. Uploaded files need to be managed in

ways that prevent the exploitation of file parsing or

expansion attacks.

To prevent the exploitation of file upload systems,

any files that are uploaded cannot be assigned

writable or executable privileges. Files which are

required to be writable need to be copied across to a

separate file managed only by the software to

prevent a malicious user from exploiting the file

between upload and use.

For defense-in-depth, some software development

languages and frameworks include the ability to

make calls to anti-malware systems to scan these

files upon upload. For more information, refer to

relevant third-party documentation.

File and file type parsers are notorious sources of

exploits. Such parsers must not make security

decisions based on file names or file extensions.

Acceptable file types should have a basic structure

that enables the software to determine the file type

without using file names or file extensions.

C.3.4.e The assessor shall examine evidence to confirm that the

software security controls implemented to mitigate attacks on

file upload mechanisms include methods to restrict the

maximum number and size of files permitted for upload.

C.3.4.f The assessor shall examine evidence to confirm that the

software security controls implemented to mitigate attacks on

file upload mechanisms account for the use of complex or

compressed file formats that are often used to overwhelm or

otherwise exploit file-parsing mechanisms.

C.3.4.g The assessor shall examine evidence to confirm that the

software security controls implemented to mitigate attacks on

file upload mechanisms include methods that store uploaded

files outside of the webroot and assign those files read-only

permissions.

C.3.4.h The assessor shall examine evidence to confirm that the

use of file-parsing mechanisms does not rely on file names or

file extensions for security purposes.

C.3.4.i Where the implementation of software security controls

is user configurable or otherwise requires user input or

interaction, the assessor shall examine evidence to confirm that

guidance is made available to stakeholders in accordance with

Control Objective 12.1 that describes how to configure such

mechanisms.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 105

Control Objectives Test Requirements Guidance

C.3.5 Software security controls are

implemented to protect Internet

accessible interfaces from hostile

object creation and data tampering.

C.3.5.a Using information obtained in Test Requirements

C.2.1.a and C.2.2, the assessor shall examine evidence to

identify all software functions exposed through Internet

accessible interfaces that accept and process data objects as

inputs.

Some software APIs accept serialized data objects

(for example, arrays, cookies, tokens, and so on) to

be passed from other systems. However, without

appropriate methods in place to restrict object

deserialization and creation, malicious individuals

may be able to use these APIs to launch denial-of-

service attacks, compromise access control

mechanisms, or inject and execute malicious code

on underlying systems.

There are numerous methods to protect against

serialization (and deserialization) attacks. Some

programming languages, libraries, and APIs provide

features and functions that are resistant to

serialization attacks. Other methods include using

deserialization mechanisms that only support pure

data formats like JSON or XML, limiting data types

allowed during object creation, encrypting

communications, and authenticating API clients.

Appropriate methods to protect against serialization

attacks depend on the API implementation. Refer to

industry sources, such as the Open Web Application

Security Project (OWASP) for more information.

For the same reasons explained in the last

paragraph of guidance for Control Objective C.3.4,

file-parsing mechanisms must not make security

decisions based on file names or file extensions.

Acceptable file types should have a basic structure

that enables the software to determine the file type

without using file names or file extensions.

(continued on next page)

C.3.5.b Where the software accepts and processes data objects

as inputs, the assessor shall examine evidence to confirm that:

• The threat of hostile object creation and data tampering

attacks is documented in accordance with Control

Objective 4.1, and

• Software security controls to mitigate such attacks are

documented and implemented in accordance with Control

Objective 4.2.

C.3.5.c The assessor shall examine evidence to confirm that the

software security controls implemented to mitigate hostile object

creation and data tampering attacks are implemented in

accordance with applicable industry standards and best

practices.

C.3.5.d The assessor shall examine evidence to confirm that the

software security controls implemented to mitigate hostile object

creation and data tampering attacks include methods that

restrict the file formats permitted by file-parsing mechanisms.

C.3.5.e The assessor shall examine evidence to confirm that the

use of file-parsing mechanisms does not rely on file names or

file extensions for security purposes.

C.3.5.f The assessor shall examine evidence to confirm that the

use of file-parsing mechanisms does not expose other

vulnerabilities.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 106

Control Objectives Test Requirements Guidance

 C.3.5.g Where the software accepts serialized objects as inputs,

the assessor shall examine evidence to confirm that software

security controls are implemented to protect against

deserialization attacks and that such security controls adhere to

applicable industry standards and best practices.

Some file-parsing mechanisms are inherently

susceptible to certain vulnerabilities. For example,

XML parsers are often vulnerable to External Entity

attacks. Similarly, JSON parsers are vulnerable to

attacks where insecure commands, such as eval(),

can enable the execution of malicious code.

To mitigate attacks that attempt to exploit

vulnerabilities in file-parsing mechanisms, it may be

necessary for entities to implement additional

software security controls. Examples of such controls

include, but are not limited to, configuring file-parsing

mechanisms to use the most restrictive configuration

feasible, avoiding or escaping certain commands

that are known issues for file-parsing mechanisms,

or isolating and executing file-parsing commands in

a sandbox. The methods used to further mitigate

such attacks should consider the specific parsers

and interpreters in use and be implemented in a

manner appropriate for each parser and interpreter.

C.3.5.h Where the software security controls implemented to

protect against hostile object creation and data tampering are

user configurable or otherwise require user input or interaction,

the assessor shall examine evidence to confirm that guidance is

made available to stakeholders in accordance with Control

Objective 12.1 that describes how to configure such

mechanisms.

C.3.6 Software security controls are

implemented to protect Internet

accessible interfaces from attacks

that exploit multi-origin resource

sharing.

C.3.6.a The assessor shall examine evidence to determine if

and/or how the software supports cross-origin access to Internet

accessible interfaces, and to confirm that access to software

APIs and resources from browser-based scripts is disabled by

default.

Software may be required to allow access to

resources or API interfaces from other domains or

Internet origins. This practice may lead to

vulnerabilities that expose sensitive data or sensitive

functions to attacks.

Where not required, cross-origin resource sharing

should be disabled. Where cross-origin resource

sharing is necessary due to a legitimate business

purpose, such access must be enabled only for the

domains and origins required for the software to

perform its intended function(s).

Use of permission lists or other configurations may

be suitable for identifying permitted origins, but such

configurations must also be protected against

modification by malicious parties.

C.3.6.b Where cross-origin access is enabled, the assessor

shall examine evidence to confirm that the reasons for enabling

cross-origin access are reasonable and justified, and that

access is restricted to the minimum number of origins feasible.

C.3.6.c The assessor shall test the software to confirm that the

claims made by the assessed entity regarding cross-origin

access are valid. At a minimum, testing is expected to include

functional testing using forensic tools/techniques.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 107

Control Objectives Test Requirements Guidance

 C.3.6.d Where the disabling or restricting cross-origin access to

software APIs requires user input or interaction, the assessor

shall examine evidence to confirm that appropriate guidance on

this process is provided to stakeholders in accordance with

Control Objective 12.1.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 108

Control Objectives Test Requirements Guidance

Control Objective C.4: Web Software Communications

Sensitive data transmissions are secured in accordance with Control Objective 6.

C.4.1 Sensitive data transmissions

are encrypted in accordance with

Control Objectives 6.2 and 6.3.

C.4.1.a Using information obtained in Test Requirement 6.2.a,

the assessor shall examine evidence to determine how

communications are handled by the software, including those

between separate systems in the overall software architecture.

The types of data which may be considered sensitive

may vary across different implementations. See

Control Objective 1.1 for more information on

identifying sensitive data.

It is therefore important that any connection that

transmits sensitive data is encrypted using strong

cryptography. Common methods for achieving this

will include the use of TLS using appropriate cipher

suites.

Although connections that do not transmit sensitive

data do not explicitly require the use of encryption, it

is noted that the use of strong cryptography to

secure all connections is considered a best practice

and should be implemented for all communications

unless legitimate business or technological

constraints exist that render such an approach

infeasible. In most cases, however, communications

between web application components include the

transmission of authentication information (user

credentials or session information) which is

considered sensitive data by definition and should

therefore be encrypted using strong cryptography.

C.4.1.b Where the software allows or otherwise supports the

transmission of sensitive data between users and systems in

different security contexts, the assessor shall examine evidence

to confirm that all such communications are encrypted using

strong cryptography in accordance with Control Objectives 6.2

and 6.3.

PCI Software Security Framework – Secure Software Requirements and Assessment Procedures, Version 1.2 December 2022

© 2019-2022 PCI Security Standards Council, LLC. All rights reserved. Page 109

Control Objectives Test Requirements Guidance

 C.4.1.c Where sensitive data is transmitted using server-to-

server communications (for example, using APIs), the assessor

shall examine evidence to confirm that the software enforces or

otherwise supports mutual authentication between systems.

Where sensitive data is transmitted between

systems operating within different security contexts

and/or different environments, it is important that

such communications be restricted to an explicitly

approved list of systems, and that the systems

involved be mutually authenticated such that

attempts to intercept or compromise such

communications are appropriately mitigated.

Where the software provider controls the

configuration of such communications, mutual

authentication must be enforced. Otherwise, the

software provider must provide features to support

the mutual authentication of disparate systems so

that an implementing entity may configure such

features accordingly.

C.4.1.d Where internally generated or self-signed certificates

are used for securing sensitive data transmissions, the assessor

shall examine evidence to confirm that:

• The use of internally generated or self-signed certificates is

reasonable and justified.

• The software is configured to accept the minimum feasible

number of internally generated or self-signed certificates.

Many organizations that choose to use internally

generated and/or self-signed certificates do so for

the benefits they offer without considering the

additional overhead needed to manage them

securely. As a result, critical security processes such

as certificate revocation and key management are

not implemented or maintained properly. For this

reason, the use of internally generated and/or self-

signed certificates should be kept to an absolute

minimum. Where their use is required, such

instances should be documented and justified.

	Document Changes
	Table of Contents
	Introduction
	Terminology
	Related Publications
	Stakeholder Roles and Responsibilities

	Overview of PCI Secure Software Standard
	Scope of Security Requirements
	Requirement Modules
	Requirement Module Applicability

	Objective-Based Approach to Requirements
	Requirement Frequency and Rigor

	Requirement Structure
	Testing Methods
	Reliance on Third-Party Testing
	Use of Sampling
	Use of a Test Platform

	Core Requirements
	Minimizing the Attack Surface
	The attack surface of the software is minimized. Confidentiality and integrity of all software critical assets are protected, and all unnecessary features and functions are removed or disabled.
	Software Protection Mechanisms
	Software security controls are implemented to protect the integrity and confidentiality of critical assets.
	Secure Software Operations
	The software provides mechanisms to detect and alert on anomalous activity and to ensure user accountability.
	Secure Software Lifecycle Management
	The software is maintained using secure software lifecycle management practices.

	Module A – Account Data Protection Requirements
	Purpose and Scope
	Security Requirements

	Module B – Terminal Software Requirements
	Purpose and Scope
	Background
	Considerations
	Security Requirements

	Module C – Web Software Requirements
	Purpose and Scope
	Considerations
	Security Requirements

